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1.1 Introduction

Images are ubiquitous and indispensable in science and everyday life. Mir-
roring the abilities of our own human visual system, it is natural to display
observations of the world in graphical form. Images are obtained in areas
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2 Blind Image Deconvolution: problem formulation and existing approaches

ranging from everyday photography to astronomy, remote sensing, medical
imaging, and microscopy. In each case, there is an underlying object or scene
we wish to observe; the original or true image is the ideal representation of
the observed scene.

Yet the observation process is never perfect: there is uncertainty in the mea-
surements, occurring as blur, noise, and other degradations in the recorded
images. Digital image restoration aims to recover an estimate of the original
image from the degraded observations. The key to being able to solve this
ill-posed inverse problem is proper incorporation of prior knowledge about the
original image into the restoration process.

Classical image restoration seeks an estimate of the true image assuming
the blur is known. In contrast, blind image restoration tackles the much
more difficult, but realistic, problem where the degradation is unknown. In
general, the degradation is nonlinear (including, for example, saturation and
quantization) and spatially varying (non uniform motion, imperfect optics);
however, for most of the work, it is assumed that the observed image is the
output of a Linear Spatially Invariant (LSI) system to which noise is added.
Therefore it becomes a Blind Deconvolution (BD) problem, with the unknown
blur represented as a Point Spread Function (PSF).

Classical restoration has matured since its inception, in the context of space
exploration in the 1960s, and numerous techniques can be found in the lit-
erature (for recent reviews see [1, 2]). These differ primarily in the prior
information about the image they include to perform the restoration task.
The earliest algorithms to tackle the BD problem appeared as long ago as
the mid-1970s [3, 4], and attempted to identify known patterns in the blur;
a small but dedicated effort followed through the late 1980s (see for instance
[5, 6, 7, 8, 9]), and a resurgence was seen in the 1990s (see the earlier reviews in
[10, 11]). Since then, the area has been extensively explored by the signal pro-
cessing, astronomical, and optics communities. Many of the BD algorithms
have their roots in estimation theory, linear algebra, and numerical analysis.

An important question one may ask is why is BD useful? Could we not
simply use a better observation procedure in the first place? Perhaps, but
there always exist physical limits, such as photonic noise, diffraction, or an
observation channel outside of our control, and often images must be captured
in suboptimal conditions. Also there are existing images of unique events that
cannot be retaken that we would like to be able to recover (for instance with
forensics or archive footage); furthermore in these cases it is often infeasible
to measure properties of the imaging system directly. Another reason is that
of cost. High-quality optics and sensing equipment are expensive. However,
processing power is abundant today and opens the door to the application
of increasingly sophisticated models. Thus BD represents a valuable tool
that can be used for improving image quality without requiring complicated
calibrations of the real-time image acquisition and processing system (i.e., in
medical imaging, video conferencing, space exploration, x-ray imaging, bio-
imaging, and so on).
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The BD problem is encountered in many different technical areas, such as
astronomical imaging [12, 13], remote sensing [14], microscopy [15], medical
imaging [16], optics [17, 18], photography [19, 20], superresolution applications
[21], and motion tracking applications [22], among others.

For example, astronomical imaging is one of the primary applications of BD

algorithms [12, 13]. Ground-based imaging systems are subject to blurring due
to the rapidly changing index of refractions of the atmosphere. Extraterres-
trial observations of the Earth and the planets are degraded by motion blur as
a result of slow camera shutter speeds relative to the rapid spacecraft motion.

BD is used for improving the quality of the Poisson distributed film grain
noise present in blurred x-rays, mammograms, and digital angiographic im-
ages. In such applications, most of the time the degradations are unavoidable
because the medical imaging systems limit the intensity of the incident radi-
ation in order to protect the patient’s health [23].

In optics, BD is used to restore the original image from the degradation
introduced by a microscope or any other optical instrument [17, 18]. The
Hubble Space Telescope (HST) main mirror imperfections have provided an
inordinate amount of images for the digital image processing community [12].

In photography, depth-of-field effects and misfocusing frequently result in
blurred images. Furthermore, motion blur and camera shake are also prob-
lems during long exposures in low lighting. The parameters describing these
processes are generally unknown; however, BD can enable restoration of these
images [19, 20].

As a final example, in tracking applications the object being tracked might
be blurred due to its own motion, or the motion of the camera. As a result,
the track is lost with conventional tracking approaches and the application of
BD approaches can improve tracking results [22].

In the rest of this chapter, we survey the field of blind image deconvolution.
In conducting this review though, we develop and present most of the tech-
niques within the Bayesian framework. Whilst many methods were originally
derived by other means, this adds consistency to the presentation and fa-
cilitates comparison among the different methods. Even today, due to the
difficulty of simultaneously estimating the unknown image and blur in the
presence of noise, the problem still provides a very fertile ground for novel
processing methods.

The chapter is organized as follows. In Section 1.2 we mathematically
define the BD problem. In Section 1.3 we provide a classification of the
existing approaches to BD. In Section 1.4 we formulate the BD problem
within the Bayesian framework, and in Section 1.5 we survey the probabilistic
models for the observation, the original image, the blur, and their associated
unknown parameters. In Section 1.6 we discuss solutions to the BD problem
as inference models under the Bayesian framework. Finally, in Section 1.7
we briefly review BD models which appeared in the literature and cannot be
easily obtained from the Bayesian formulation. Conclusions are presented in
Section 1.8.
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f(x)

n(x)

g (x)h(x)

FIGURE 1.1: Linear space invariant image degradation model.

1.2 Mathematical Problem Formulation

In digital image processing, the general, discrete model for a linear degra-
dation caused by blurring and additive noise is given by

g (x) =
∑

s∈Sh

h(x, s)f(s) + n(x), x = (x1, x2) ∈ Sf (1.1)

where f (x), g (x), h (x, s), and n (x) represent the original image, the observed
image, the blur or PSF, and the observation noise, respectively, Sf ⊂ IR2 is the
support of the image, and Sh ⊂ IR2 is the support of the PSF. The additive
noise process n (x) may originate during image acquisition, processing, or
transmission. Common types of noise are electronic, photoelectric, film grain,
and quantization noise. It is common to assume n(x) is White Gaussian Noise
(WGN), uncorrelated with the image (although certain types of noise may in
practice be signal dependent).

The general objective of blind restoration is to estimate f and h. The diffi-
culty in solving this problem with a spatially varying blur motivates the use
of a space-invariant model for the blur. This leads to the following expression
for the degradation system:

g(x) = (f ∗ h)(x) + n(x) =
∑

s∈Sh

h(x− s)f(x) + n(x), (1.2)

where the operator (∗) denotes 2-D convolution. The block diagram of the
LSI degradation model presented in Equation (1.2) is shown in Figure 1.1.

The image degradation model described by Equation (1.1) or Equation (1.2)
is often represented in terms of a matrix-vector formulation, that is,

g = Hf + n, (1.3)

where the vectors g, f , and n represent the observed image, the original
image, and the observation noise ordered lexicographically by stacking either
the rows or the columns of each image into a vector. H is a Block Toeplitz
with Toeplitz Blocks (BTTB) matrix when Equation (1.2) is used, which can
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be approximated by a Block Circulant with Circulant Blocks (BCCB) matrix
[24]. Since BCCB matrices are diagonalized using the 2-D Discrete Fourier
Transform (dft), this allows (1.2) to be expressed in the discrete frequency
domain. Note that it will also be useful to write Hf = Fh, where F is a
matrix formed from the image data and h is a vector parameterizing the blur.

The BD problem refers to finding estimates f̂(x) and ĥ(x) for f(x) and h(x)
based on g(x) and prior knowledge about f(x), h(x), and n(x). It should be
noted that although the degradation model is LSI, the deconvolution algo-
rithm may be nonlinear or spatially varying or both.

Blind deconvolution is an ill-posed problem: the solution of Equation (1.2)
may not depend continuously on the data, may not be unique, or it may not
even exist [1, 25]. With practical approaches, an approximate solution to the
problem is estimated, so that the existence of the solution can be disregarded;
however, the nonuniqueness and the sensitivity of the solution to the noise
are still serious problems.

1.3 Classification of Blind Image Deconvolution Method-

ologies

We may classify BD approaches into two categories according to the stage
at which we identify the blur: a priori or jointly with the image.

A priori blur identification methods With this approach, the PSF is
identified separately from the original image, and later used in combi-
nation with one of the classical image restoration algorithms in order
to restore the original image. A parametric blur model may be used,
for example, one of the general models to be described in Section 1.5.2;
then the objective is to identify the most likely blur parameters h from
the observation. This approach has been used in [3, 4], for example, and
in a Bayesian context in [26].

Experimental approaches are also possible: images of one or more point
sources are collected and used to obtain an estimate of the PSF (this, for
example, was done with the HST). Furthermore if a good understanding
of the imaging system is available for a specific application, we may make
an a priori prediction of the blur; however unless we use this model as
a prior in one of the other algorithms, this is not a blind procedure as
such. This may be possible in microscopy, medical ultrasound, remote
sensing, or optical telescope systems (e.g., Tiny Tim modeling of the
HST).

Joint identification methods The majority of existing methods fall into
this class, where the image and blur are identified simultaneously. How-
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ever, in practice many methods in this category use an alternating ap-
proach to estimate f and h rather than truly finding the joint solution.
Prior knowledge about the image and blur is typically incorporated in
the form of models like those presented in Section 1.5.2 and Section
1.5.3. Parameters describing such models are also required to be esti-
mated from the available data; often this is performed before image and
blur identification, although simultaneous identification is possible, e.g.,
see [27].

In the following section, we use the Bayesian framework to present the
different BD approaches proposed in the literature. As we will see, most of
them can be seen as special cases of an application of Bayes’ theorem: the main
differences between them are the choices of the function to be optimized, and
the prior distributions used to model the original image and the degradation
process. Using the Bayesian framework allows us to describe the general BD

problem in a systematic way, and to identify the similarities and differences
between the proposed approaches in the above two categories. Each category
may be seen as a particular inference model in the Bayesian paradigm.

1.4 Bayesian Framework for Blind Image Deconvolution

A fundamental principle of the Bayesian philosophy is to regard all pa-
rameters and observable variables as unknown stochastic quantities, assigning
probability distributions based on subjective beliefs. Thus in BD, the original
image f , the blur h, and the noise n in Equation (1.3) are all treated as sam-
ples of random fields, with corresponding prior Probability Density Functions
(PDFs) that model our knowledge about the imaging process and the nature
of images. These distributions depend on parameters which will be denoted
by Ω. The parameters of the prior distributions are termed hyperparameters.

Often Ω is assumed known (or is first estimated separately from f and h).
Alternatively we may adopt the hierarchical Bayesian framework whereby Ω
is also assumed unknown, in which case we also model our prior knowledge
of its values. The PDFs for the hyperparameters are termed hyperprior dis-
tributions. This abstraction allows greater robustness to error when there is
uncertainty, and is essential when we are less confident in the observed data
(due to a lower Signal-to-Noise Ratio (SNR)). This hierarchical modeling
allows us to write the joint global distribution

p(Ω, f ,h,g) = p(Ω)p(f ,h|Ω)p(g|Ω, f ,h), (1.4)

where p(g|Ω, f ,h) is termed the likelihood of the observations. Typically, we
assume that f and h are a priori conditionally independent, given Ω, i.e.,
p (f ,h |Ω) = p (f |Ω)p (h |Ω). Then the task is to perform inference using



Bayesian Modeling of Blind Image Deconvolution 7

the posterior

p (f ,h, Ω |g ) =
p (g | f ,h, Ω)p (f |Ω)p (h |Ω)p (Ω)

p (g)
. (1.5)

Note that this corresponds to the joint estimation method described in
Section 1.3. We can also marginalize either f , to describe the a priori blur
identification method as

p(h|g) =

∫
· · ·

∫
p (f ,h, Ω |g ) df · dΩ, (1.6)

or marginalize h to obtain

p(f |g) =

∫
· · ·

∫
p (f ,h, Ω |g ) dh · dΩ. (1.7)

Note that by marginalizing h this approach seeks to bypass the blur identifica-
tion stage and estimate the image f directly, by using appropriate constraints
or prior knowledge, although this is less common in practice.

In the following sections we study first the various prior models for the
image, blur, and hyperparameters that have appeared in the literature. We
then analyze the estimation of these unknown quantities as inference models
under the Bayesian framework.

1.5 Bayesian Modeling of Blind Image Deconvolution

1.5.1 Observation Model

The first stage of the Bayesian formulation is specifying the likelihood of
the observed image, g. Due to the model in Equation (1.3), the PDF of g
is related to that of the observation noise, n. A typically used model for n
is zero mean independent WGN with distribution N

(
n

∣∣ 0, β−1W−1
)
, where

β−1 denotes the variance, and W is a diagonal weights matrix included for
generality. It allows us to represent spatially varying noise statistics, and it
also introduces flexibility in the energy minimization formulation, as will be
described later. For stationary noise, W = I. Thus we have

p (n) = p (g | f ,h, β ) = det|W|

(
β

2π

)N/2

exp

[
−

1

2
β‖g −Hf‖2

W

]
, (1.8)

where N is the size of the image vector, f , and the weighted norm used in the
PDF is defined as ‖x‖2

W
= xT WTWx.

Alternative noise modeling, for instance Poisson noise arising in low-intensity
imaging, is also assumed in certain BD problems. We will concentrate, how-
ever, on the Gaussian noise model presented above.
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1.5.2 Parametric Prior Blur Models

The following analytical models are frequently used in Equation (1.2) to
represent the LSI image degradation operator, i.e., the PSF. In this case
the prior distribution for the blur is parameterized directly by the unknowns
defining the parametric model.

Traditionally, when the parametric form of the PSF is assumed known,
p (h) is usually a uniform distribution. Then the unknown parameters may
be estimated using, for example, Maximum Likelihood (ML) methods (see
[28, 29]). Alternatively the unknown quantities defining the parametric func-
tion may be estimated a priori if the real underlying image is known. For
instance, in astronomy the parameters of the atmospheric turbulence blur are
estimated using observed known point sources (stars); similarly, the parame-
ters describing the HST PSF model could also be estimated.

Note in the case when such a parametric model is not used, the values
of the PSF coefficients directly parameterize the prior distribution for the
blur. Ideally this prior should embody the physical constraints arising from
an imaging system: positivity of the coefficients and energy preservation (the
PSF coefficients should sum to one). Other prior assumptions often used for
the PSF coefficients are smoothness or piecewise smoothness, symmetry, and
finite support size. Due to similarities to the priors used for images, these
priors will be discussed in Section 1.5.3.

1.5.2.1 Linear Motion Blur

In general, relative motion of the camera and scene to be imaged results
in a PSF representing temporal integration along this motion path. If the
camera movement or object motion is fast relative to the exposure period, we
may approximate this as a linear motion blur. This is represented as the 1-D
local averaging of neighboring pixels. An example of a horizontal motion blur
model is given by (L is an even integer):

h(x) =





1

L + 1
,
−

L

2
≤ x1 ≤

L

2
,

x2 = 0

0 , otherwise.

(1.9)

1.5.2.2 Atmospheric Turbulence Blur

This type of blur is common in remote sensing and aerial imaging appli-
cations. For long-term exposure through the atmosphere a Gaussian PSF

model is used:

h (x) = K e−
|x|2

2σ2 , (1.10)

where K is a normalizing constant ensuring that the blur has a unit volume,
and σ2 is the variance that determines the severity of the blur. Alternative
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atmospheric blur models have been suggested in [30, 31]. In these works the
PSF is approximated by the function

h(x) ∝ (1 +
|x|2

R2
)−δ, (1.11)

where δ and R are unknown parameters.

1.5.2.3 Out-of-Focus Blur

Photographical defocusing is another common type of blurring, primarily
due to the finite size of the camera aperture. A complete model of the cam-
era’s image formation system depends on many parameters. These include the
focal length, the camera aperture size and shape, the distance between object
and camera, the wavelength of the incoming light, and effects due to diffrac-
tion (see [32] for further details). Furthermore, poor-quality optics introduce
aberrations of their own. Accurate knowledge of all of these parameters is
usually not available after the picture was taken. When the blur due to defo-
cusing is large, the uniform circular PSF model is used as an approximation
to these effects:

h (x) =





1

πr2
, |x| ≤ r

0 , otherwise.
(1.12)

The uniform 2-D blur is sometimes used as a cruder approximation to an
out-of-focus blur; it is also used as a model for sensor pixel integration in
superresolution restoration. This model is defined (with L an even integer) as

h (x) =






1

(L + 1)2
, −

L

2
≤ (x1, x2) ≤

L

2

0 , otherwise.

(1.13)

1.5.3 Prior Image and Blur Models

The prior distributions p(f |Ω) and p(h|Ω) should reflect our beliefs about
the nature of f and h and constrain the space of possible solutions for them
to the most probable ones. This is necessary due to the ill-posed nature of the
problem. Abstract descriptions of natural images have been made: smooth,
piecewise-smooth, or textured, for instance (of course some applications may
have other specific constraints). We can attempt to model these descriptions
in a stochastic sense using the priors. Typically this is done by specifying
probabilistic relations between neighboring image pixels or their derivatives.
Similar procedures may be followed for the PSF.



10 Blind Image Deconvolution: problem formulation and existing approaches

We will consider a general exponential model of the form

p (f |Ω) =
1

Zf(Ω)
exp [−Uf (f , Ω)] (1.14a)

p (h |Ω) =
1

Zh(Ω)
exp [−Uh(h, Ω)] (1.14b)

to represent the image and blur priors. The normalizing terms Zf and Zh

depend on the hyperparameters for each distribution. They may be treated as
constants if we assume the hyperparameters to be known; otherwise they must
be calculated as

∫
exp [−Uf(f , Ω)] df and

∫
exp [−Uh(h, Ω)] dh, respectively,

which may cause difficulties in inference unless we assume a special form for
U(·). Note that U(·) is sometimes termed the energy function.

Many different image and blur models in the literature can be put in the
form of Equation (1.14); particular cases will now be considered.

1.5.3.1 Stationary Gaussian Models

The most common model is the class of Gaussian models provided by Uf =
1
2α‖Lf‖2. Then, if det|L| 6= 0, the term Zf in Equation (1.14) becomes simply

(2π)
N
2 α−N

2 det|L|−1, which if we use a fixed stationary form for L is simple
to calculate. These models are often termed Simultaneous Autoregression
(SAR) or Conditional Autoregression (CAR) models [33].

In the most basic case, we can use L = I, the identity. This imposes con-
straints on the magnitude of the intensity distribution of f . A more common
usage is L = C, the discrete Laplacian operator, which instead constrains the
derivative of the image. For instance, Molina et al. [27] used this model for
both image and blur, giving

p(f |αim) ∝ α
N/2
im exp

[
−

1

2
αim ‖ Cf ‖2

]
(1.15a)

p(h|αbl) ∝ α
M/2
bl exp

[
−

1

2
αbl ‖ Ch ‖2

]
. (1.15b)

Note that in these two equations N and M should in practice be replaced by
N − 1 and M − 1, respectively, because CT C is singular.

This SAR model is suitable for f and h if it is assumed that the luminosity
distribution is smooth on the image domain, and that the PSF is a partially
smooth function.

In [34] the SAR model was used for the image prior, and a Gaussian PDF

for the PSF; that is,

p(h|µbl, αbl) = N (µbl, α
−1
bl I). (1.16)

The components of the blur are assumed statistically independent so that
the covariance matrix is diagonal. Clearly, a Gaussian PDF with unknown
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1 f(x) g (x)v(x)

A(z1; z2)
H(z1; z2)

n(x)

FIGURE 1.2: ARMA degradation model.

mean vector and fully populated covariance matrix might be used to model
image and blur priors. However, this requires the simultaneous estimation of
a very large number of hyperparameters, thus making the approach highly
impractical unless we use additional hyperpriors (see Section 1.5.4) to impart
a priori knowledge of the hyperparameters’ values [27].

1.5.3.2 Autoregressive Models

A class of blind image deconvolution algorithms (see, e.g., [28, 29]) model
the observed image g as an Autoregressive Moving Average (ARMA) process,
as shown in Figure 1.2.

The observation Equation (1.2) forms the Moving Average (MA) part of the
model. The original image is modeled as a 2-D Autoregressive (AR) process:

f (x) =
∑

s∈Sa:s 6=0

a (s) f (x− s)+v (x) , (1.17)

or in matrix-vector form:

f = Af + v, (1.18a)

or equivalently, f = Fa + v, (1.18b)

where Sa ⊂ IR2 is the support of the 2-D AR coefficients a (x), and A has a
BTTB form. The excitation noise signal, or modeling error, v (x) is a zero-
mean WGN process with diagonal covariance matrix Λv, that is independent
of f (x). Since v = (I − A)f , the PDF of f is obtained via a probability
transformation of v, as a Gaussian: p (f |a, Λv ) = N (f | 0, Λf ). The image
covariance matrix is defined as

Λf = (I−A)
−1

Λv (I−A)
−T

. (1.19)

It should be clear that p (f) is in the form of Equation (1.14), with Uf =
1
2‖(I−A)f‖2Λv

and Zf = (2π)
N
2 det|Λv|

1

2 det|I−A|−1. Unlike the SAR model
above, however, where a deterministic form is used for the matrix L, the AR

coefficients defining A and the excitation noise covariance matrix Λv also have
to be estimated (in [28] a flat prior distribution is assumed on them).
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A related formulation to the stationary ARMA model is also considered by
Katsaggelos and Lay in [29, 35, 36]. In these works, the AR model parameters
are not estimated directly, but rather the defining sequence of the matrix Λf

is found in the discrete frequency domain, along with the other parameters,
under the assumption that the image model is stationary. Observe that this
approach does not assume a known model support size Sa or blur support Sh.

The AR image model is good at representing textured images; however,
like any of the other stationary Gaussian models in this section, it is not such
a good model for an original image that has prominent edges as part of the
scene. Therefore it is possible to consider nonstationary extensions to the AR

model.
This was done, for example, in [26], where the image is partitioned into

blocks each assumed to be homogeneous regions with their own AR coefficients
and excitation variance. The equations above remain the same, although the
matrix A is no longer BTTB and the sizes of F and a increase. A local mean
may be assumed for each region to further better model a real image. In
general, a segmentation of the image could be assumed such that the blocks
in the model coincide with the natural regions in the image. The use of a
nonstationary image model in conjunction with a stationary blur can also aid
blur identification [26].

1.5.3.3 Markov Random Field Models

A class of models encountered extensively in image segmentation [37], clas-
sical image restoration [38], and also in superresolution restoration [39] and
BD [40, 41] are the Markov Random Field (MRF) models [42]. They are
usually derived using local spatial dependencies; however, we may see they
are closely related to the other models in this section.

Defining U =
∑

c∈C Vc(f) in Equation (1.14), we have the definition of a
Gibbs distribution. In this context, Z is termed the partition function. Vc(f) is
a potential function defined over cliques, c in the image [42]. Briefly speaking,
this gives a simple way of specifying interactions over local neighborhoods

in the image field. If we use quadratic potentials, Vc(f) =
(
dT

c f
)2

, we may
rewrite the Gibbs distribution as a Gaussian:

p(f) =
1

Z
exp

[
−fTBf

]
=

1

Z
exp

[
−

∑

c∈C

fT Bcf

]
(1.20)

where Bc is obtained from dc and satisfies [Bc]x,s are only nonzero when pixels
x and s are neighbors. Typically the vectors dc represent finite difference
operators. The partition function is now equal to (2π)

N
2 det|B|−

1

2 . This
model is also then termed a Gaussian Markov Random Field (GMRF) [43]
or CAR [33].

We may also use Generalized Gaussian MRFs (GGMRFs) with arbitrary
nonquadratic potentials of a similar functional form: Vc(f) = ρ(dT

c f), where
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ρ is some (usually convex) function, such as the Huber function [43] or p-
norm (with p ≥ 1) based function, ρ(u) = |u|p. This is similar to the use
of potential functions used in anisotropic diffusion methods, the motivation
being edge preservation in the reconstructed image. Other extensions to the
model consider hierarchical, or Compound GMRFs (CGMRFs), also with
the goal of avoiding oversmoothing of edges [44, 38].

1.5.3.4 Anisotropic Diffusion and Total Variation Type Models

Non-quadratic image priors have been investigated using variational inte-
grals in the anisotropic diffusion [45] or Total Variation (TV) [46] regular-
ization frameworks, with the aim of preserving edges by not over-penalizing
discontinuities, i.e. outliers in the image gradient distribution, see [47, 48] for
a unifying view of the probabilistic and variational approaches. The main dif-
ference to the GGMRFs models mentioned above is that these usually begin
with a formulation in the continuous image domain resulting in Partial Differ-
ential Equations (PDEs) that must be solved. However, eventual discretiza-
tion is eventually necessary, and hence the constraints may be reformulated
as non-Gaussian priors, or Gaussians with a non-stationary covariance matrix
[20]. Alternatively, other methods propose formulating the TV norm directly
in the discrete domain [49, 50].

The generalized regularization approach using anisotropic diffusion has been
proposed by You and Kaveh [45]. In this formulation, convex functions κ(·)
and υ(·) of the image gradient |∇f(x)| and the PSF gradient |∇h(x)| respec-
tively are used in defining regularization functionals:

E(f) =

∫

Sf

κ (|∇f(x)|) dx (1.21a)

E(h) =

∫

Sh

υ (|∇h(s)|) ds. (1.21b)

This is in analogy with standard regularization procedures. However as the
functionals are continuous, variational calculus is used to perform the differ-
entiation needed for minimization [51]. This results in a PDE which must
be solved for each variable. Consider for instance minimization of Equa-
tion (1.21a) for f ; the solution must satisfy

∇fE(f) = ∇ ·

(
κ′(|∇f |)

|∇f |
∇f

)
= 0, (1.22)

with appropriate boundary conditions. One method of solution is imposing
an artificial time evolution variable t, and using a steepest descent method,
i.e., for f ,

∂f̂

∂t
= −∇fE(f̂). (1.23)
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This may be interpreted as representing a physical anisotropic diffusion
process [45, 51, 52]. That is, as the time variable t progresses, directional
smoothing occurs depending on the local image gradient. The strength and
type of smoothing depends on the diffusion coefficient or flux variable, c,
which is related to the potential function by

c(|∇f |) =
κ′(|∇f |)

|∇f |
(1.24)

We may consider c(|∇f |) to be the amount of smoothing perpendicular to
the edges. Appropriate choice of c or equivalently κ can result in spatially-
adaptive edge preserving restoration.

Consider two cases of the potential function κ and related diffusion coeffi-
cient c. In the first case, κ(x) = 1

2x2 and hence c(|∇f |) = 1, and ∇fE(f) =
∇2(f), i.e., a Laplacian operator [53]. This corresponds to standard spatially-
invariant isotropic regularization, or a CAR model with the discrete Laplacian
when discretized.

Another choice proposed for the BD problem by Chan and Wong [46] is
given by the Total Variation (TV) norm. In this case, κ(x) = x and hence
c(|∇f |) = 1

|∇f | . The result is that smoothing in the direction orthogonal to

the edges is completely suppressed and is only applied parallel to the edge
directions. This is demonstrated in [45] by decomposing the anisotropic dif-
fusion equation, Equation (1.23) into components parallel and perpendicular
to the edges. A very efficient way to solve the resulting optimization problem
is shown in [46] in this particular case.

These two choices lead us to consider the following discrete prior image
models:

p(f) ∝ exp

[
−αim

∑

i

((∆h
i f)

2
i + (∆v

i f)
2
i )

]
(1.25)

for the Laplacian; and

p(f) ∝ exp

[
−αim

∑

i

√
(∆h

i f)
2
i + (∆v

i f)
2
i )

]
(1.26)

for the TV norm, where ∆h
i and ∆v

i are linear operators corresponding to
horizontal and vertical first order differences, at pixel i, respectively.

A combination of the two choices for c is considered in [45], resulting in a
spatially-adaptive diffusion coefficient. The smoothing strength is increased
using the Laplacian in areas with low gradient magnitude, and decreased
using the TV norm in areas where large intensity transitions occur in order
to preserve edges while still removing noise. This is analogous to the use of
the Huber function in Section 1.5.3.3. Many other diffusion coefficients are
proposed in the literature, including very complex structural operators (see
[52] for a review).
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Šroubek and Flusser [20] use a similar scheme to those already mentioned,
but (using the half-quadratic approach [54, 55]) demonstrate how the anisotropic
diffusion model may be written in the form of Equation (1.14) by discretiza-
tion of the functional in Equation (1.21a):

p (f , c(f)) =
1

Zf
exp

[
−

1

2
fT B (c) f

]
(1.27)

They equate the diffusion, or flux variable, to the hidden line process often
used in CGMRFs, that is it represents the edge strength between two pixels in
the image. Therefore it is possible to build a spatially-varying weights matrix
B from the local image gradients. Note that as the flux variable is a function
of f , so is the covariance, so this is not strictly a Gaussian distribution unless
B is assumed fixed. In practice, using an iterative scheme, B may be updated
at each iteration.

A similar motivation was used in [19] to obtain a spatially-varying weights
matrix based on the local image variance, as was previously suggested in
[56, 57]. The difference here is that the regularization is isotropic; better
performance can be expected with the anisotropic schemes.

1.5.4 Hyperprior Models

So far we have studied the distributions p(f ,h|Ω), p(g|Ω, f ,h) that appear
in the Bayesian modeling of the BD problem in Equation (1.4). We complete
this modeling by studying now the distribution p(Ω).

An important problem is the estimation of the vector of parameters Ω when
they are unknown. To deal with this estimation problem, the hierarchical
Bayesian paradigm introduces a second stage (the first stage consisting again
of the formulation of p(f |Ω), p(h|Ω), and p(g|f ,h, Ω)). In this stage the
hyperprior p(Ω) is also formulated.

A large part of the Bayesian literature is devoted to finding hyperprior
distributions p(Ω) for which p(Ω, f ,h|g) can be calculated in a straightforward
way or be approximated. These are the so-called conjugate priors [58], which
were developed extensively in Raiffa and Schlaifer [59].

Besides providing for easy calculation or approximations of p(Ω, f ,h|g),
conjugate priors have, as we will see later, the intuitive feature of allowing
one to begin with a certain functional form for the prior and end up with a
posterior of the same functional form, but with the parameters updated by
the sample information.

Taking the above considerations about conjugate priors into account, the
literature in BD uses different a priori models for the parameters depending
on the type of unknown parameters. For parameters, ω, corresponding to
inverses of variances, the gamma distribution is used. This is defined by:

p(ω) = Γ(ω|aω, bω) =
(bω)

aω

Γ(aω)
ωaω−1 exp[−bω ω], (1.28)
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where ω > 0 denotes a hyperparameter, bω > 0 is the scale parameter, and
aω > 0 is the shape parameter. These parameters are assumed known. The
gamma distribution has the following mean, variance, and mode:

E[ω] =
aω

bω
, V ar[ω] =

aω

(bω)
2 , Mode[ω] =

aω − 1

bω
. (1.29)

Note that the mode does not exist when ao
ω ≤ 1 and that mean and mode do

not coincide.
For components of mean vectors the corresponding conjugate prior is a

normal distribution. Additionally, for covariance matrices the hyperprior is
given by an inverse Wishart distribution (see [60]).

We observe, however, that in general most of the methods proposed in the
literature use the uninformative prior model

p(Ω) = constant. (1.30)

1.6 Bayesian Inference Methods in Blind Image

Deconvolution

There are a number of different ways that we may proceed to estimate the
image and blur using Equation (1.5). Depending on the prior models cho-
sen, finding analytic solutions may be difficult, so approximations are often
needed. Many methods in the literature seek point estimates of the param-
eters f and h. Typically, this reduces the problem to one of optimization.
However, the Bayesian framework provides other methodologies for estimat-
ing the distributions of the parameters [60, 61, 62], which deal better with
uncertainty; approximating or simulating the posterior distribution are two
options. These different inference strategies and examples of their use will
now be presented, proceeding from the simplest to the more complex.

1.6.1 Maximum a Posteriori and Maximum Likelihood

One possible point estimate is provided by the Maximum A Posteriori
(MAP) solution, which are the values of f , h, and Ω that maximize the
posterior probability density:

{f̂ , ĥ, Ω̂}MAP = argmax
f ,h,Ω

p (g | f ,h, Ω)p (f |Ω)p (h |Ω)p (Ω) . (1.31)

The Maximum Likelihood (ML) solution attempts instead to maximize the
likelihood p (g | f ,h, Ω) with respect to the parameters:

{f̂ , ĥ, Ω̂}ML = argmax
f ,h,Ω

p (g | f ,h, Ω) . (1.32)
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Note, however, that in this case we can only estimate the parameters in Ω
that are present in the conditional distribution p (g | f ,h, Ω) but none of those
present only in p (f ,h |Ω).

The above maximization of the likelihood is typically seen as a non-Bayesian
method, although it is identical to the MAP solution with uninformative (flat)
prior distributions. Some approaches may use flat priors for some parameters
but not others. Assuming known values for the parameters is equivalent to
using degenerate distributions (delta functions) for priors. For instance, a
degenerate distribution on Ω is defined as

p (Ω) = δ (Ω, Ω0) =

{
1, if Ω = Ω0

0, otherwise.
(1.33)

Then, the MAP and ML solutions become, respectively,

{f̂ , ĥ}MAP = argmax
f ,h

p (g | f ,h, Ω0 ) p (f |Ω0 ) p (h |Ω0 ) (1.34)

{f̂ , ĥ}ML = argmax
f ,h

p (g | f ,h, Ω0 ) . (1.35)

Many deconvolution methods can fit into this Bayesian formulation. The
main differences among these algorithms come from the form of the likelihood,
the particular choice of priors on the image, blur, and the hyperparameters,
and the optimization methods used to find the solutions.

Observe that the regularization-based approaches using the L2 norm fre-
quently found in the literature also fall into this category. In these approaches
the blind deconvolution problem is stated as a constrained minimization prob-
lem, where a cost function is minimized with a number of regularization con-
straint terms.

In regularization approaches the cost function is chosen as the error function
‖g −Hf‖2W , which ensures fidelity to the data. The regularization terms are
used to impose additional constraints on the optimization problem. Generally,
these constraints ensure smoothness of the image and the blur, that is, the
high-frequency energy of the image and the blur is minimized. The effect of
the regularization terms is controlled by the regularization parameters, which
basically represent the trade-off between fidelity to the data and desirable
properties (smoothness) of the solutions.

For example, in [19], the classical regularized image restoration formulation
used in [56, 57, 63] was extended to the BD case by adding a constraint for
the blur. The problem is stated, in a relaxed minimization form, as

f̂ , ĥ = argmin
f ,h

[
‖g−Hf‖2W + λ1‖Lf f‖

2 + λ2‖Lhh‖
2
]
, (1.36)

where λ1 and λ2 are the Lagrange multipliers for each constraint, and Lf and
Lh are the regularization operators. In [19] each L is the Laplacian multiplied
by a spatially varying weights term, calculated as in [63, 57, 64, 65] from
the local image variance in order to provide some spatial adaptivity to avoid
oversmoothing edges.
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1.6.1.1 Iterated Conditional Modes

Let us consider again the solution of Equation (1.34). A major problem
in the optimization is the simultaneous estimation of the variables f and h.
A widely used approach is that of Alternating Minimization (AM) of Equa-
tion (1.36) (or its continuous equivalent for PDE formulations), which follows
the steepest descent with respect to one unknown while holding the other un-
known constant. The advantage of this algorithm is its simplicity due to the
linearization of the objective function. This optimization procedure corre-
sponds to the Iterated Conditional Modes (ICM) proposed by Besag [66].

This estimation procedure has been applied to standard regularization ap-
proaches [19, 67], and to the anisotropic diffusion and TV type models de-
scribed in Section 1.5.3.4, where the objective functional becomes

∫

Sf



g(x)−

∫

Sh

h(s− x)∗f(x)ds




2

dx+λ1

∫

Sf

κ (|∇f(x)|) dx+λ2

∫

Sh

υ (|∇h(s)|) ds.

(1.37)
Partial derivatives with respect to f and h are taken to give the two PDEs
for AM.

There are various numerical methods to solve the associated PDEs. These
include the classical Euler, Newton, or Runge–Kutta methods; or recently
developed approaches, such as time-marching [68], primal-dual methods [69],
lagged diffusivity fixed point schemes [70], and half-quadratic regularization
[54] (similar to the discrete schemes in [55, 71]). All of these methods employ
techniques to discretize and linearize the PDEs to approximate the solution.
The selection of a particular method depends on the computational limitations
and speed requirements, since different techniques have different simplicity,
stability, and convergence speed properties.

1.6.2 Minimum Mean Squared Error

The MAP estimate does not take into account the whole posterior PDF.
If the posterior is sharply peaked about the maximum then this does not
matter; however, in the case of high observation noise or a broad (heavy-
tailed) posterior this estimate is likely to be unreliable. As mentioned in [72],
for a Gaussian in high dimensions most of the probability mass is concentrated
away from the probability density peak.

The Minimum Mean Squared Error (MMSE) estimate attempts to find the
optimal parameter values that minimize the expected mean squared error be-
tween the estimates and the true values. In other words we aim at calculating
the mean value of p(f ,h, Ω|g). In practice, finding MMSE estimates analyti-
cally is generally difficult, though it is possible with sampling-based methods
(Section 1.6.5) and can be approximated using variational Bayesian methods
(Section 1.6.4).
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(a) (b) (c)

FIGURE 1.3: (a) Original Lena image; degraded images with Gaussian
shaped PSF of variance 9, with: (b) BSNR=40 dB; (c) BSNR=20 dB.

1.6.3 Marginalizing Hidden Variables

In the discussion so far none of the three unknowns, f ,h, and Ω have been
marginalized out to perform inference on only a subset of f ,h, and Ω.

We can, however, approach the BD inference problem by first calculating

ĥ, Ω̂ = argmax
h,Ω

∫

f

p(Ω)p(f ,h|Ω)p(g|Ω, f ,h)df (1.38)

and then selecting as restoration the image

f̂
∣∣∣
ĥ,Ω̂

= argmax
f

p(f |Ω̂)p(g|Ω̂, f , ĥ). (1.39)

We can also marginalize h and Ω to obtain

f̂ = argmax
f

∫

h,Ω

p(Ω)p(f ,h|Ω)p(g|Ω, f ,h)dh · dΩ (1.40)

The two above inference models are named Evidence- and Empirical-based
analysis [73], respectively. The marginalized variables are called hidden vari-
ables.

The Expectation Maximization (EM) algorithm, first described in [74] is
an incredibly popular technique in signal processing for iteratively solving
ML and MAP problems that can be regarded as having hidden data. Its
properties are well studied: convergence to a local maximum of the likelihood
or the posterior distribution is guaranteed. It is particularly suited to inverse
problems in image restoration and BD as it is obvious that the unobserved
image, f , represents a natural choice for the hidden data and in consequence
for solving Equation (1.38).

The EM algorithm has been used in BD, for example, in [35, 36] in a general
frequency domain formulation and in [28] using the ARMA model (Section
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(a) (b)

FIGURE 1.4: Blind deconvolution with the method in [35]. (a) 40 dB
BSNR case; (b) 20 dB BSNR case.

1.5.3.2). Some examples of the restorations possible using the method in
[36] will now be demonstrated. Consider the original Lena image shown in
Figure (1.3). This is synthetically degraded by blurring the original image by
a Gaussian-shaped PSF with variance 9, and adding WGN with two different
variances. This gives the images also in Figures (1.3b) and (1.3c), which have
40 dB and 20 dB Blurred-image SNR (BSNR) respectively. These test images
will also be used in later sections. The restored images using the EM method
[36] are shown in Figure (1.4).

Note that the Evidence-based analysis can also be used to marginalize the
image f as well as the unknown parameters Ω to obtain p(h|g), as in Equa-
tion (1.6), then the mode of this posterior distribution can be calculated. In
order to estimate the original image f we can then use only the observation
model (see [26] for details). An example of the results obtained by this method
is shown in Figure (1.5). The original 256 × 256 pixel Cameraman image is
blurred with a causal blur, and noise is added at 35 dB BSNR. The blind
deconvolved image is shown in Figure (1.5).

It is rarely possible to calculate in closed form the integrals involved in
the Evidence- and Empirical-based Bayesian inference. To solve this problem
we can use approximations of the integrands. Let us consider the integral in
Equation (1.38), then for each value of h and Ω we can calculate

f̂
∣∣∣
h,Ω

= argmax
f

p(f |Ω)p(g|f ,h, Ω) (1.41)

and perform the second-order Taylor’s expansion of log p(g|f ,h, Ω) around

f̂ . As a consequence of the approximation, the integral in Equation (1.38)
is performed over a distribution on f that is Gaussian and usually easy to
calculate. This methodology is called Laplace distribution approximation [75,
76] and has been applied, for instance, by Galatsanos et al. [77, 78] to partially
known blur deconvolution problems.
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(a) (b) (c)

FIGURE 1.5: (a) Original Cameraman image; (b) degraded image; (c)
reconstruction with the method in [26].

1.6.4 Variational Bayesian Approach

Variational Bayesian methods are generalizations of the EM algorithm to
compute ML or MAP estimates. The EM algorithm has proven to be very
useful in a wide range of applications; however, in many problems its applica-
tion is not possible because the posterior distribution cannot be specified. The
variational methods overcome this shortcoming by approximating p(f ,h, Ω|g)
by a simpler distribution q(f ,h, Ω) obtained by minimizing the Kullback–
Leibler (KL) divergence between the variational approximation and the exact
distribution. Additionally to providing approximations to the estimates based
on p(f ,h, Ω|g), the study of the distribution q(f ,h, Ω) allows us to examine
the quality of these estimates.

Note that the Laplace approximation [77, 78] can be considered as an inter-
mediate step between inference based on the true posterior and the one based
on a variational distribution approximation.

The variational approximation applied to BD aims at approximating the
intractable posterior distribution p(f ,h, Ω|g) by a tractable one denoted by
q(f ,h, Ω). For an arbitrary PDF q(f ,h, Ω), the goal is to minimize the KL

divergence, given by: [79]

KL(q(f ,h, Ω) ‖ p(f ,h, Ω|g)) =

∫
q(f ,h, Ω) log

(
q(f ,h, Ω)

p(f ,h, Ω|g)

)
df · dh · dΩ

=

∫
q(f ,h, Ω) log

(
q(f ,h, Ω)

p(f ,h, Ω,g)

)
df · dh · dΩ

+ const,

(1.42)

which is always nonnegative and equal to zero only when q(f ,h, Ω)=p(f ,h, Ω|g),
which corresponds to the EM result.

To reduce computational complexity and enable the approximate parameter
distributions to be found in an analytic form, the PDF q(f ,h, Ω) is factorized
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(a) (b)

FIGURE 1.6: Restorations with the variational Bayesian method in [34]:
(a) 40 dB BSNR case; (b) 20 dB BSNR case

using the mean field approximation, such that

q(f ,h, Ω) = q(f)q(h)q(Ω). (1.43)

For a vector parameter θ ∈ Θ = {f ,h, Ω}, we denote by Θθ the subset of Θ
with θ removed; for example, for θ = f , Θf = {h, Ω} and q(Θf ) = q(Ω)q(h).
An iterative procedure can be developed to estimate the distributions of the
parameters {f ,h, Ω}. At each iteration, the distribution of the parameter θ is
estimated using the current estimates of the distribution of Θθ:

qk(θ) = argmin
q(θ)

KL(qk(Θθ)q(θ) ‖ p(Θ | g)). (1.44)

AM strategies can be employed. For example, in [34], a cascaded EM

algorithm is proposed similar to the AM algorithm, where at each iteration
the distributions of the parameters f and h are calculated in an alternating
fashion while assuming one parameter to be constant. This approach can also
be interpreted as an EM algorithm where at each stage the current estimate
of one parameter is assumed “known” in estimating the other parameter, as
in the classical image restoration problems.

Some example restorations using the variational method are now presented.
Using the VAR1 method presented by Likas and Galatsanos [34] produces the
results shown in Figure (1.6). The BR method in Molina et al. [27] produces
the restored images in Figure (1.7).

1.6.5 Sampling Methods

The most general approach to performing inference for the BD problem is
to simulate the posterior distribution in Equation (1.5). This in theory allows
us to perform inference on arbitrarily complex models in high-dimensional
spaces, where no analytic solution is available. Markov Chain Monte Carlo
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(a) (b)

FIGURE 1.7: Restorations with variational Bayesian method in [27]: (a)
40 dB BSNR case; (b) 20 dB BSNR case

(MCMC) methods (see, e.g., [61, 80, 81]) attempt to approximate the poste-
rior distribution by the statistics of samples generated from a Markov Chain.

The most simple example of MCMC is the Gibbs sampler which has been
used in classical image restoration in conjunction with MRF image models
[38]. If we can write down analytic expressions for the conditional distribu-
tions of all the parameters we wish to estimate, given the others, we simply
draw samples from each of the distributions in turn, conditioned on the most
recently sampled values of the other parameters. For example if we want to
simulate p (f ,h, Ω |g ), the iterations would proceed as follows:

First iteration: f (1) ← p(f | h(0), Ω(0),g)

h(1) ← p(h | f (1), Ω(0),g)

Ω(1) ← p(Ω | f (1),h(1),g)

Second iteration: f (2) ← p(f | h(1), Ω(1),g)

h(2) ← p(h | f (2), Ω(1),g)

Ω(2) ← p(Ω | f (2),h(2),g)

...
...

tth iteration: f (t) ← p(f | h(t−1), Ω(t−1),g)

...
...

where the symbol ← means the value is drawn from the distribution on the
right. Notice the similarity to the iterative procedure for the Variational
Bayesian approach in Equation (1.44), where instead of drawing samples we
are taking expectations of the same distributions. Similarly, with the use of
Simulated Annealing [38], the ICM formulation can be considered a determin-
istic approximation of the sampling, where the conditional distributions are
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replaced by degenerate distributions at their modes (termed “instantaneous
freezing” in [66]).

Once we have accumulated samples, point estimates and other statistics of
the distribution may be found using Monte Carlo integration; for example, to
find the MMSE estimate of the f we simply take the mean of the samples,
1
n

∑n
t=1 f (t).

Clearly, these methods can provide solutions closer to the optimal one than
AM or any of the other methods. However, they are very computationally
intensive by comparison, and although in theory convergence to the posterior
is guaranteed, in practice it can be hard to tell when this has occurred; it may
take a long time to explore the parameter space. Sampling methods could, for
instance, be of use for the boundary condition model proposed in [82] where,
because of the blur prior used, both direct inference as well as approximations
by variational methods are difficult to perform.

1.7 Non–Bayesian Blind Image Deconvolution Models

In this section other blind deconvolution models, which have appeared in
the literature and cannot be obtained from the Bayesian formulation described
in the previous sections, are briefly reviewed.

1.7.1 Spectral and Cepstral Zero Methods

These algorithms fall into the a priori class of approaches described in
Section 1.3, according to which the PSF of the blurring system is estimated
separately from the image. They were the first examples of BD to be devel-
oped for images (see Stockham et al. [3] and Cannon [4]).

These blur identification algorithms are well suited to the problem when
the frequency response of the blurring system has a known parametric form
that is completely characterized by its frequency domain zeros: this is the
case for linear motion blur and circular defocusing blur (Section 1.5.2). Let
us rewrite Equation (1.2) in the frequency domain, while ignoring the noise
term, i.e.,

G (ω) = F (ω) H (ω) . (1.45)

Due to the multiplication of the spectra, the zeros of G (ω) are the zeros of
F (ω) and H (ω) combined. Therefore the problem reduces to identifying
which of the zeros of G (ω) belong to H (ω). The use of the parametric model
makes this possible: the Fourier Transform (ft) of the linear and circular
blurs are Sinc and Bessel functions that have periodic patterns of zeros in
their spectra. The spacing between the zeros depends on the parameter L in
Equation (1.9) or r in Equation (1.12). Hence if this pattern can be detected
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in G (ω), the parameters can be identified.
In practice this type of identification often fails due to the presence of noise

masking the periodic patterns. The homomorphic [3] or Cepstral [4] methods
attempt to exploit the effect of the nonstationary image and stationary blur
to alleviate this difficulty. The homomorphic procedure begins by partitioning
the image into blocks fi, of size larger than the PSF. Each blurred block gi

is equal to the blur convolved with the unblurred block:

gi(x) = fi(x) ∗ hi(x) + ni(x). (1.46)

This expression holds apart from at the block boundaries, due to contamina-
tion from neighbouring blocks (in practice the blocks are windowed to reduce
these edge effects). The log operator may then be applied to the ft of the
blurred image, which has the effect of converting the original convolution to
an addition. The average of these blocks may then be calculated (assuming
N blocks):

1

N

N∑

i=1

log(Gi(ω)) ≈
1

N

N∑

i=1

log(Fi(ω)) + log(Hi(ω)). (1.47)

This summation now consists of the average of the contributions from the
blocks Hi(ω), which are assumed to be equal, and Fi(ω), which are not,
since the image blocks have varying spectral content. Therefore the blur
component should tend to dominate in the summation. It may be possible to
remove this average image component, subtracting the average of a collection
of representative unblurred images.

As an alternative to Equation (1.47), the Power Cepstrum may be used,
which involves taking the ft of the log power spectra of the signals. Combined
with the block-based method just described, the result is that a large spike
will occur in the Cepstral domain wherever there was a periodic pattern of
zeros in the original Fourier domain; the distance of this spike from the origin
represents the spacing between the zeros and hence may be used to identify the
parameters of the blurs. The large contribution from the blur term repeated in
each block will dominate, and the high-frequency noise and spectrally averaged
image content tend to be separated from the blur spike in the Cepstral domain.
These methods have been extended to use the Power Bispectrum instead in
[83] which shows improved performance in low SNR conditions. However,
these methods are all limited to the parametric PSF models.

1.7.2 Zero Sheet Separation Algorithms

Lane and Bates [6] have shown that any signal g (x), formed by multiple
convolutions, in theory, is automatically deconvolvable, provided its dimen-
sion is greater than one. This argument rests on the analytical properties of
the Z-Transform (ZT) of N -dimensional signals with finite support, which is
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necessarily zero on (2N − 2)-dimensional hypersurfaces in a 2N -dimensional
space.

The method assumes that there is no additive noise, i.e., the relation
G(z1, z2) = H(z1, z2)F (z1, z2) holds, where F (z1, z2) and H(z1, z2) are the
2-D ZTs of the original image and blur. Then the task is to separate the
2-D ZT of the blurred image, G(z1, z2), into the two convolutive factors. As
G(z1, z2) is a polynomial in z1, z2, the solution is equivalent to factorizing the
polynomial, i.e., identifying the zeros that belong to each component.

In order to do this, several assumptions are made: the convolutive factors
(image and blur) should have compact (finite) support; the ZT of each factor
should be zero on a single continuous surface, its zero sheet ; that these zero
sheets do not coalesce — they only intersect at discrete points (which it is
suggested often holds in practice).

Zero sheets appear conceptually useful in analyzing the BD problem; how-
ever, in practice their applicability is limited. The main problem of this
method is its high computational complexity and sensitivity to noise.

1.7.3 ARMA Parameter Estimation Algorithms

The estimation of the ARMA parameters in the model described in Sec-
tion 1.5.3.2 can be done in many different ways; in addition to the Bayesian
approaches already described, there also exist Generalized Cross-Validation
(GCV) and neural network-based algorithms, which are based on second-
order statistics. Also, Higher-Order Statistics (HOS) approaches can be used
for estimating the ARMA parameters for non-Gaussian models (it should be
noted that with the second-order statistics algorithms the phase of the PSF

can not be recovered, unless it is assumed that the PSF is minimum phase).
The GCV algorithm will now be described.

Cross-validation is a parameter estimation method that partitions the ob-
served data into two sets. Given some parameter values, the estimation set
is used to form a prediction, and then the validation set is used to test the
validity of this prediction. If the parameter values used were close to the
correct ones, the validation criterion will be small. To make full use of the
data, the criterion may be averaged across all the choices of estimation sets,
using only one data element for each validation set. Hence the procedure is
also referred to as the “leave one out” algorithm. Prior to its use in BD,
GCV was used in the estimation of the regularization parameter for classical
restoration [84, 85].

When GCV is used to solve the BD problem [86], the original image f̂ is
estimated using all but one of the pixels, x, from the degraded image g, for a
particular value of the parameter set Θ = {h, Ω} under test. The validation
criterion is then to test the difference between the pixel x of g that was left
out, and the corresponding reblurred pixel in Hf̂ . This is averaged over all
choices of x. With the GCV criterion defined, a numerical search technique
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may be used to search for the parameter set that minimizes the criterion.

1.7.4 Nonparametric Deterministic Constraints Algorithms

This class of algorithms differs from the other joint blur and image identifi-
cation methods in that they do not explicitly model the original image or the
PSF with a stochastic or deterministic model. Instead, they typically use an
iterative formulation to impose deterministic constraints on the unknowns at
each step. These deterministic constraints may include nonnegativity, finite
support, and energy bounds on the image, the blur, or both. These con-
straints are incorporated into an optimality criterion which is minimized with
numerical iterative techniques.

Examples in the literature based on deterministic constraint principles in-
clude the Iterative Blind Deconvolution (IBD) algorithm [7, 87, 88], McCal-
lum’s simulated annealing algorithm [89], the Nonnegativity And Support
constraints with Recursive Image Filtering (NAS-RIF) algorithm [90], and
the blind superresolution algorithm [91], among others. Some of these meth-
ods will now be briefly described.

1.7.4.1 The Iterative Blind Deconvolution Algorithms

One of the early IBD algorithms is the one proposed by Ayers and Dainty
[7]. In addition to nonnegativity and finite support, it uses Wiener-like con-
straints to estimate image and blur in the Fourier domain at each iteration.
Beginning with an initial random PSF estimate ĥ0(x) and image estimate

f̂0(x), the following sequence defines the algorithm at iteration i:

1. Find F̂i (k), the dft of f̂i(x).

2. Impose blur constraints in the Fourier domain (where (.)
∗

denotes com-
plex conjugation):

H̃i (k) =
G(k)F̂ ∗

i (k)
∣∣∣F̂i (k)

∣∣∣
2

+ α/
∣∣∣Ĥi−1 (k)

∣∣∣
2 (1.48)

3. Find h̃i(x), the idft of H̃i (k).

4. Impose spatial domain positivity and finite support constraints on h̃i(x)

to give ĥi(x)

5. Find Ĥi (k), the dft of ĥi(x).

6. Impose image constraints in the Fourier domain:

F̃i (k) =
G(k)Ĥ∗

i (k)
∣∣∣Ĥi (k)

∣∣∣
2

+ α/
∣∣∣F̂i (k)

∣∣∣
2 , (1.49)
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7. Find f̃i(x), the idft of F̃i (k),

8. Impose spatial domain positivity and finite support constraints on f̃i(x)

to give f̂i+1(x).

9. Next iteration: set i = i + 1; go to step 1.

The real constant α represents the energy of the additive noise, and it has
to be carefully chosen in order to obtain a reliable restoration. While this
method is intuitively appealing, its convergence properties are undefined and
tend to be highly sensitive to the initial guess [10]. Notice the similarity to the
EM algorithm in the Fourier domain [29, 35]; however, the IBD algorithm is
heuristically derived, and does not include estimation of the image and noise
model parameters.

Further IBD-type algorithms using set-theoretic projection have been pro-
posed by Yang et al. [92] and Lane [93], for the special case of astronomical
speckle imaging.

1.7.4.2 The NAS-RIF Algorithms

The NAS-RIF method by Kundur and Hatzinakos [10, 90] is a similar
method to IBD. It seeks to minimize a cost function at each step, by updating
an fir restoration filter, which is convolved with g to give an estimate f̂ . The
cost function is based on the same constraints as those in IBD, apart from
that no assumptions are made on the PSF other than it having an inverse,
both of which must be absolutely summable. The constraints are applied via
the method of Projection Onto Convex Sets (POCS). NAS-RIF seems to
have been fairly successful in its goals, with good convergence properties and
reasonable quality restorations. However, it is only applicable to the class of
images with finite support, i.e., it is entirely contained in the image frame on a
uniform black background. This may include applications in medical imaging
and astronomy, but prevents its widespread use with other natural images.
Extensions to this method have appeared in [94, 95].

1.7.5 Nonparametric Algorithms based on Higher-Order
Statistics

The principle of the HOS algorithms [96] – [99] is to use a nonlinear or non-
Gaussian representation of the original image, allowing higher -order moments
of the signal to be represented. These models have been typically applied when
the image or its edges are modeled as sparse “spike-like” signals (for example,
star fields).

In order to exploit HOS, an adaptive filter combined with a nonlinearity
is used to restore the blurred image. The filter is updated to give a restored
image that best fits the model. The adaptive filter structure for the HOS

algorithms is shown in Figure 1.8.
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FIGURE 1.8: The blind image deconvolution based on the higher order
statistics.

Note that g (x) represents the degraded image, f̂ (x) represents the origi-

nal image estimate, f̃ (x) represents the output of the zero-order nonlinearity,
r (x) represents the restoration filter used to obtain the original image es-
timate, and e (x) represents an error sample. The restoration filter r (x) is
optimized in order to minimize some cost function J that involves a sequence
of error samples e (x).

1.7.6 Total Least Squares (TLS)

Total Least Squares approaches are extensions of the standard least squares
methods. The PSF is assumed to be the sum of a deterministic and a stochas-
tic component, that is, H = H + δH. Using this, the degradation model in
Equation (1.3) can be expressed as

g + δg = (H + δH)f , (1.50)

where g and δg are the deterministic and stochastic components of the ob-
servation g, respectively. The problem is formulated as a minimization of
δg and δH subject to Equation (1.50). Generally, Regularized Constrained
Total Least Squares (RCTLS) filters [100] are applied to find the minimum
values, where the matrices are assumed to have a special form, such as BTTB.
In addition to the tls solutions already presented that use the hierarchical
Bayesian framework [78], linear algebra-based solutions are applied in [101].

1.7.7 Learning-Based Algorithms

Learning-based algorithms for image restoration and blind image restora-
tion have been recently proposed [102, 103]. The basic idea with such an
approach is that the prior knowledge required for solving various (inverse)
problems can be learned from training data, i.e., a set of prototype images
belonging to the same (statistical) class of images to the ones processed.

Original images and their degraded versions by the known degradation op-
erator (restoration problem) are used for designing Vector Quantizer (VQ)
codebooks. The codevectors are designed using the blurred images. For each
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such vector, the high frequency information obtained from the original im-
ages is also available. During restoration, the high-frequency information of a
given degraded image is estimated from its low-frequency information based
on the codebooks. For the BD problem, a number of codebooks are designed
corresponding to various versions of the blurring function. Given a noisy and
blurred image, one of the codebooks is chosen based on a similarity measure,
therefore providing the identification of the blur. To make the restoration
process computationally efficient, Principal Component Analysis (PCA) and
VQ-Nearest Neighborhood approaches are utilized in [103].

1.7.8 Methods for Spatially Varying Degradation

Blind deconvolution in case of Spatially Varying (SV) degradation is a
more difficult problem than the spatially invariant case. The blur is generally
assumed to be varying smoothly or piecewise-smoothly, and the variation to
be slow in the spatial domain. The standard EM procedure has been extended
to use sectioned methods where the image is divided into blocks [104, 105].
A hierarchical sliding window approach with the local Fourier transform is
employed in [106]. In [107], SV PSF identification for a known image is
considered using an MRF model for the parameterization of the SV blur.
Some of the spatially invariant methods described in previous sections are
also extended to the SV blur case, for example, a parameterized piecewise-
smooth degradation model is used to extend the anisotropic regularization-
based restoration method in [45].

1.7.9 Multichannel Methods

Multichannel images are typically acquired using an imaging system with
multiple sensors, multiple time instants, or multiple frequency bands. Ex-
amples of multichannel images include multispectral images, where different
channels present different frequency bands, wave radiometric images, and im-
age sequences, such as video. Reviews of classical and blind multichannel
restoration methods are presented in [108, 109]. Multichannel methods can
be classified into two approaches, Single-Input-Multiple Output (SIMO) and
Multiple-Input-Multiple-Output (MIMO).

The EM approach in [35] is combined with the MIMO restoration method
in [110] to obtain a blind multichannel method in [111], where cross-channel
blurs are also taken into account. The SIMO multichannel restoration prob-
lem is addressed in [112] by an ARMA model, where the likelihood function
maximization is performed using a steepest descent algorithm.

Another class of algorithms have been developed using Greatest Common
Divisor (GCD) methods. Under the relative coprimeness condition — the
channel PSFs share no common factor other than a scalar — the GCD of
the outputs of the channels will be the original image. By exploiting the com-
mutativity of the convolution operator, a matrix equation is formed involving
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channel outputs and PSFs. Then, as an extension of 1-D blind equalization
methods, eigenstructure properties of the matrices may be used to directly
estimate the PSFs and the original image. Perfect restoration algorithms
for noise-free degradation with fir PSFs have been proposed in [113] and
[114]. A similar approach with a direct estimation method has been proposed
in [115]. The noise is a major problem for these approaches. To deal with
noise amplification, direct vector-space methods have been proposed in [116]
and [117], and sufficiency conditions are derived for exact restoration in [118].
Rav-Acha and Peleg [119] have proposed a multichannel method with an a
priori blur identification method via an exhaustive search, and a coprimeness
condition is imposed on the channel model.

Recently an extension of [113] and [114] has been proposed in [120], that
exploits anisotropic regularization priors mentioned in Section 1.5.3.4. As
well as the standard TV form, a more advanced Mumford-Shah regularization
term is also used. Very good restoration results are achieved even in low SNR

conditions. This method is extended to deal with unknown PSF support and
global translational motion in [20], where a MAP formulation is utilized.

Observe that there is an inherent advantage with multichannel methods in
the amount of information available to aid both blur identification and image
restoration. The coprimeness condition ensures that the problem becomes
less ill-posed; therefore we should expect better results than in single-channel
methods.

1.8 Conclusions

In this chapter we have analyzed the methods proposed in the literature to
tackle BD problems from the point of view of Bayesian modeling and infer-
ence. We have shown that most of the proposed methods can be considered as
particular selections of probability distributions and inference models within
the Bayesian framework. The study of inference models that go from single-
point estimates to distribution simulations makes possible the introduction
of image and blur models encapsulating information that goes beyond simple
prior constraints.
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[20] F. Šroubek and J. Flusser, “Multichannel blind deconvolution of spa-
tially misaligned images,” IEEE Transactions on Image Processing,
vol. 7, pp. 45–53, July 2005.

[21] C. A. Segall, R. Molina, and A. K. Katsaggelos, “High-resolution im-
ages from low-resolution compressed video,” IEEE Signal Processing
Magazine, vol. 20, no. 3, pp. 37–48, 2003.

[22] S. Dai, M. Yang, Y. Wu, and A. K. Katsaggelos, “Tracking motion-
blurred targets in video,” in International Conference on Image Pro-
cessing (ICIP’06), Atlanta, GA, October 2006.

[23] K. Faulkner, C. J. Kotre, and M. Louka, “Veiling glare deconvolution
of images produced by X-ray image intensifiers,” Third Int. Conf. on
Image Proc. and Its Applications, pp. 669–673, 1989.

[24] A. K. Jain, Fundamentals of Digital Image Processing. New Jersey:
Prentice Hall, 1 ed., 1989.

[25] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imag-
ing. Institute of Physics Publishing, 1 ed., 1998.

[26] T. E. Bishop and J. R. Hopgood, “Blind image restoration using a block-
stationary signal model,” in ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing — Proceedings, May 2006.

[27] R. Molina, J. Mateos, and A. Katsaggelos, “Blind deconvolution us-
ing a variational approach to parameter, image, and blur estimation,”
IEEE Transactions on Image Processing, vol. 15, no. 12, pp. 3715–3727,
December 2006. .



34 Blind Image Deconvolution: problem formulation and existing approaches

[28] R. L. Lagendijk, J. Biemond, and D. E. Boekee, “Identification and
restoration of noisy blurred images using the expectation-maximization
algorithm,” IEEE Transactions on Acoustic, Speech, and Signal Pro-
cessing, vol. 38, pp. 1180-1191, July 1990.

[29] A. K. Katsaggelos and K. T. Lay, “Maximum likelihood identification
and restoration of images using the expectation-maximization algo-
rithm,” in Digital Image Restoration (A. K. Katsaggelos, ed.), Springer-
Verlag, 1991.

[30] A. F. J. Moffat, “A theoretical investigation of focal stellar images in the
photographic emulsion and application to photographic photometry,”
Astronomy and Astrophysics, vol. 3, pp. 455–461, 1969.

[31] R. Molina and B. D. Ripley, “Using spatial models as priors in astronom-
ical image analysis,” Journal of Applied Statistics, vol. 16, pp. 193–206,
1989.

[32] H.-C. Lee, “Review of image-blur models in a photographic system using
the principles of optics,” Optical Engineering, vol. 29, pp. 405–421, May
1990.

[33] B. D. Ripley, Spatial Statistics, pp. 88–90, JohnWiley, 1981.

[34] A. C. Likas and N. P. Galatsanos, “A variational approach for Bayesian
blind image deconvolution,” IEEE Transactions on Signal Processing,
vol. 52, no. 8, pp. 2222–2233, 2004.

[35] K. T. Lay and A. K. Katsaggelos, “Image identification and image
restoration based on the expectation-maximization algorithm,” Opti-
cal Engineering, vol. 29, pp. 436–445, May 1990.

[36] A. K. Katsaggelos and K. T. Lay, “Maximum likelihood blur identifi-
cation and image restoration using the EM algorithm,” IEEE Transac-
tions on Signal Processing, vol. 39, no. 3, pp. 729–733, 1991.

[37] H. Derin and H. Elliott, “Modelling and segmentation of noisy and
textured images using Gibbs random fields,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-9, pp. 39–55,
January 1987.

[38] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-6, no. 6, pp. 721–741,
1984.

[39] R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution frames
from video sequences,” IEEE Transactions on Image Processing, vol. 5,
no. 6, pp. 996–1011, 1996.



References 35

[40] J. Zhang, “The mean field theory in EM procedures for blind Markov
random field image restoration,” IEEE Transactions on Image Process-
ing, vol. 2, no. 1, pp. 27–40, 1993.

[41] B. A. Chipman and B. D. Jeffs, “Blind multiframe point source image
restoration using MAP estimation,” Conference Record of the Asilomar
Conference on Signals, Systems and Computers, vol. 2, pp. 1267–1271,
1999.

[42] C. S. Won and R. M. Gray, Stochastic Image Processing. Information
Technology: Transmission, Processing, and Storage, Kluwer Academic
/ Plenum Publishers, 2004.

[43] C. A. Bouman and K. Sauer, “Generalized Gaussian image model for
edge-preserving MAP estimation,” IEEE Transactions on Image Pro-
cessing, vol. 2, no. 3, pp. 296–310, 1993.

[44] F.-C. Jeng and J. W. Woods, “Compound Gauss-Markov random fields
for image estimation,” IEEE Transactions on Signal Processing, vol. 39,
no. 3, pp. 683–697, 1991.

[45] Y. L. You and M. Kaveh, “Blind image restoration by anisotropic reg-
ularization,” IEEE Transactions on Image Processing, vol. 8, no. 3,
pp. 396–407, 1999.

[46] T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,”
IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 370–375,
1998.

[47] A. Hamza, H. Krim, and G. Unal, “Unifying probabilistic and varia-
tional estimation,” IEEE Signal Processing Magazine, vol. 19, no. 5,
pp. 37–47, 2002.

[48] T. F. Chan and J. Shen, Image Processing and Analysis: Variational,
Pde, Wavelet, and Stochastic Methods. SIAM, 2005.

[49] T. F. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear
denoising,” IEEE Transactions on Image Processing, vol. 10, no. 2,
pp. 231–241, 2001.

[50] J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira, “To-
tal variation-based image deconvolution: a majorization-minimization
approach,” in ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing — Proceedings, May 2006.

[51] Y. You, W. Xu, A. Tannenbaum, and M. Kaveh, “Behavioral analysis of
anisotropic diffusion in image processing,” IEEE Transactions on Image
Processing, vol. 5, no. 11, pp. 1539–1553, 1996.

[52] J. Weickert, “A review of nonlinear diffusion filtering,” in SCALE-
SPACE ’97: Proceedings of the First International Conference on Scale-



36 Blind Image Deconvolution: problem formulation and existing approaches

Space Theory in Computer Vision, London, UK, pp. 3–28, Springer-
Verlag, 1997.

[53] Y.-L. You and M. Kaveh, “Ringing reduction in image restoration by
orientation-selective regularization,” IEEE Signal Processing Letters,
vol. 3, no. 2, pp. 29–31, 1996.

[54] A. Chambolle and P.-L. Lions, “Image recovery via total variation mini-
mization and related problems,” Numerische Mathematik, vol. 76, no. 2,
pp. 167–188, 1997.

[55] D. Geman and G. Reynolds, “Constrained restoration and the recovery
of discontinuities,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 14, no. 3, pp. 367–383, 1992.

[56] R. L. Lagendijk, J. Biemond, and D. E. Boekee, “Regularized itera-
tive image restoration with ringing reduction,” IEEE Transactions on
Acoustic, Speech, and Signal Processing, vol. 36, pp. 1874–1888, Decem-
ber 1988.

[57] A. K. Katsaggelos, J. Biemond, R. W. Schafer, and R. M. Mersereau, “A
regularized iterative image restoration algorithm,” IEEE Transactions
on Signal Processing, vol. 39, pp. 914–929, April 1991.

[58] J. O. Berger, Statistical Decision Theory and Bayesian Analysis, ch. 3
and 4. New York, Springer-Verlag, 1985.

[59] H. Raiffa and R. Schlaifer, Applied Statistical Decision Theory. Divi-
sion of Research, Graduate School of Business, Administration, Harvard
University, Boston, 1961.

[60] A. Gelman, J. B. Carlin, H. S. Stern, and D. R. Rubin, Bayesian Data
Analysis, Chapman & Hall, 2003.

[61] R. M. Neal, “Probabilistic inference using Markov chain Monte
Carlo methods,” Tech. Rep. CRG-TR-93-1, Dept. of Computer
Science, University of Toronto, 1993. available online at
http://www.cs.toronto.edu/∼radford/res-mcmc.html.

[62] M. I. Jordan, Z. Ghahramani, T. S. Jaakola, and L. K. Saul, “An in-
troduction to variational methods for graphical models,” in Learning in
Graphical Models, pp. 105–162, MIT Press, 1998.

[63] A. K. Katsaggelos, Iterative Image Restoration Algorithms, PhD the-
sis, Georgia Institute of Technology, School of Electrical Engineering,
August 1985.

[64] S. N. Efstratiadis and A. K. Katsaggelos, “Adaptive iterative image
restoration with reduced computational load,” Optical Engineering,
vol. 29, pp. 1458–1468, 1990.



References 37

[65] M. G. Kang and A. K. Katsaggelos, “General choice of the regulariza-
tion functional in regularized image restoration,” IEEE Transactions
on Image Processing, vol. 4, no. 5, pp. 594–602, 1995.

[66] J. Besag, “On the statistical analysis of dirty pictures,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 48, no. 3,
pp. 259–302, 1986.

[67] L. Chen and K.-H. Yap, “A soft double regularization approach to para-
metric blind image deconvolution,” IEEE Transactions on Image Pro-
cessing, vol. 14, no. 5, pp. 624–633, 2005.

[68] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” in Proceedings of the eleventh annual inter-
national conference of the Center for Nonlinear Studies on Experimental
mathematics: computational issues in nonlinear science, Amsterdam,
The Netherlands, pp. 259–268, Elsevier North-Holland, Inc., 1992.

[69] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-dual
method for total variation-based image restoration,” SIAM Journal on
Scientific Computing, vol. 20, pp. 1964–1977, November 1999.

[70] C. R. Vogel and M. E. Oman, “Iterative methods for total variation de-
noising,” SIAM Journal on Scientific Computing, vol. 17, no. 1, pp. 227–
238, 1996.

[71] D. Geman and C. Yang, “Nonlinear image recovery with half-quadratic
regularization,” IEEE Transactions on Image Processing, vol. 4, no. 7,
pp. 932–946, 1995.

[72] R. Molina, A. K. Katsaggelos, and J. Mateos, “Bayesian and regular-
ization methods for hyperparameter estimation in image restoration,”
IEEE Transactions on Image Processing, vol. 8, no. 2, pp. 231–246,
1999.

[73] R. Molina, “On the hierarchical Bayesian approach to image restoration.
Applications to Astronomical images,” IEEE Transactions on Pattern
Analysis and Machine Intell., vol. 16, no. 11, pp. 1122–1128, 1994.

[74] A. D. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the E-M algorithm,” Journal of the Royal
Statistical Society: Series B, vol. 39, pp. 1–37, 1977.

[75] R. Kass and A. E. Raftery, “Bayes factors,” Journal of the American
Statistical Association, vol. 90, pp. 773–795, 1995.

[76] D. J. C. MacKay, “Probable networks and plausible predictions: a re-
view of practical Bayesian methods for supervised neural networks,”
Network: Computation in Neural Systems, no. 6, pp. 469-505, 1995.



38 Blind Image Deconvolution: problem formulation and existing approaches

[77] N. P. Galatsanos, V. Z. Mesarovic, R. Molina, A. K. Katsaggelos,
and J. Mateos, “Hyperparameter estimation in image restoration prob-
lems with partially-known blurs,” Optical Engineering, vol. 41, no. 8,
pp. 1845–1854, 2002.

[78] N. P. Galatsanos, V. Z. Mesarovic, R. Molina, and A. K. Katsagge-
los, “Hierarchical Bayesian image restoration for partially-known blur,”
IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1784–1797,
2000.

[79] S. Kullback, Information Theory and Statistics, New York, Dover Pub-
lications, 1959.

[80] C. Andrieu, N. de Freitras, A. Doucet, and M. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, pp. 5–43,
2003.
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[108] F. Šroubek and J. Flusser, “An overview of multichannel image restora-
tion techniques,” in Week of Doctoral Students (J. Safrnkov, ed.),
Prague, pp. 580–585, Matfyzpress, 1999.

[109] N. P. Galatsanos, M. Wernick, and A. K. Katsaggelos, “Multi-channel
image recovery,” in Handbook of Image and Video Processing (A. Bovik,
ed.), ch. 3.7, pp. 161–174, Academic Press, 2000.

[110] A. K. Katsaggelos, K. T. Lay, and N. Galatsanos, “A general framework
for frequency domain multichannel signal processing,” IEEE Transac-
tions on Image Processing, vol. 2, no. 3, pp. 417–420, 1993.

[111] B. C. Tom, K. Lay, and A. K. Katsaggelos, “Multichannel image identi-
fication and restoration using the expectation-maximization algorithm,”
Optical Engineering, vol. 35, no. 1, pp. 241–254, 1996.

[112] A. Rajagopalan and S. Chaudhuri, “A recursive algorithm for maxi-
mum likelihood-based identification of blur from multiple observations,”
IEEE Transactions on Image Processing, vol. 7, no. 7, pp. 1075–1079,
1998.

[113] G. Harikumar and Y. Bresler, “Perfect blind restoration of images
blurred by multiple filters: theory and efficient algorithms,” IEEE
Transactions on Image Processing, vol. 8, pp. 202–219, February 1999.



References 41

[114] G. Harikumar and Y. Bresler, “Exact image deconvolution from multi-
ple FIR blurs,” IEEE Transactions on Image Processing, vol. 8, no. 6,
pp. 846–862, 1999.

[115] G. Giannakis and R. J. Heath, “Blind identification of multichannel
FIR blurs and perfect image restoration,” IEEE Transactions on Image
Processing, vol. 9, no. 11, pp. 1877–1896, 2000.

[116] H. Pai and A. C. Bovik, “Exact multichannel blind image restoration,”
IEEE Signal Processing Letters, vol. 4, no. 8, pp. 217–220, 1997.

[117] H. Pai and A. C. Bovik, “On eigenstructure-based direct multichan-
nel blind image restoration,” IEEE Transactions on Image Processing,
vol. 10, no. 10, pp. 1434–1446, 2001.

[118] H. Pai, J. Havlicek, and A. C. Bovik, “Generically sufficient conditions
for exact multichannel blind image restoration,” Proceedings of the 1998
IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, vol. 5, pp. 2861–2864, 1998.

[119] A. Rav-Acha and S. Peleg, “Two motion-blurred images are better than
one,” Pattern Recognition Letters, vol. 26, pp. 311–317, 2005.
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