Bayesian Blind Deconvolution with General Sparse Image Priors Supplementary Technical Note

S. Derin Babacan¹, Rafael Molina², Minh N. Do¹, and Aggelos K. Katsaggelos³

¹University of Illinois at Urbana-Champaign, ²Universidad de Granada, ³Northwestern University

In the following, the equation and table numbers are denoted with preceding "A-". The ones without the preceding "A-" refer to the main paper.

Concave Conjugate Formulation

Given the function $\rho(\sqrt{x_{\gamma}(i)})$ which is concave and increasing on $(0,\infty)$, we have the concave conjugate pair

$$\rho\left(x_{\gamma}(i)\right) = \inf_{\xi_{\gamma}(i)>0} \frac{1}{2} \xi_{\gamma}(i) x_{\gamma}^{2}(i) - \rho^{*}\left(\frac{\xi_{\gamma}(i)}{2}\right)$$
(A-1)

$$\rho^*\left(\frac{\xi_{\gamma}(i)}{2}\right) = \inf_{x_{\gamma}(i)} \frac{1}{2}\xi_{\gamma}(i) x_{\gamma}^2(i) - \rho\left(x_{\gamma}(i)\right) . \tag{A-2}$$

Taking the derivative of the right hand side of (A-1) w.r.t. $\xi_{\gamma}(i)$ and setting it equal to zero, we obtain

$$x_{\gamma}^2(i) = \rho^{*'}\left(\frac{\xi_{\gamma}(i)}{2}\right). \tag{A-3}$$

Next, taking the derivative of the right hand side of (A-2) w.r.t. $x_{\gamma}(i)$ and setting it equal to zero, we have

$$\frac{\rho'\left(x_{\gamma}(i)\right)}{x_{\gamma}(i)} = \xi_{\gamma}(i) \,. \tag{A-4}$$

The equalities in (A-3) and (A-4) specify the optimal value of $\xi_{\gamma}(i)$ for a specific value of $x_{\gamma}(i)$.

This representation is used in the paper in order to derive the cost-function for VB. Since the distribution $p(\xi_{\gamma})$ is degenerate, using (A-3) in (A-4), the VB estimate of $E[\xi_{\gamma}(i)] = \frac{\rho'(\nu_{\gamma}(i))}{\nu_{\gamma}(i)}$ in (23) can be written as the solution of

$$\mathbf{E}\left[\xi_{\gamma}(i)\right] = \operatorname*{arg\,min}_{\xi_{\gamma}(i)} \frac{1}{2} \,\xi_{\gamma}(i) \,\nu_{\gamma}^{2}(i) \,-\rho^{*}\left(\frac{\xi_{\gamma}(i)}{2}\right) \tag{A-5}$$

which is used in deriving the cost-function for the VB approach (26) in Section 3.2 of the main paper.