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Abstract—In this paper, we model the components of the com-
pressive sensing (CS) problem, i.e., the signal acquisition process,
the unknown signal coefficients and the model parameters for the
signal and noise using the Bayesian framework. We utilize a hi-
erarchical form of the Laplace prior to model the sparsity of the
unknown signal. We describe the relationship among a number of
sparsity priors proposed in the literature, and show the advantages
of the proposed model including its high degree of sparsity. More-
over, we show that some of the existing models are special cases of
the proposed model. Using our model, we develop a constructive
(greedy) algorithm designed for fast reconstruction useful in prac-
tical settings. Unlike most existing CS reconstruction methods, the
proposed algorithm is fully automated, i.e., the unknown signal co-
efficients and all necessary parameters are estimated solely from
the observation, and, therefore, no user-intervention is needed. Ad-
ditionally, the proposed algorithm provides estimates of the uncer-
tainty of the reconstructions. We provide experimental results with
synthetic 1-D signals and images, and compare with the state-of-
the-art CS reconstruction algorithms demonstrating the superior
performance of the proposed approach.

Index Terms—Bayesian methods, compressive sensing, inverse
problems, relevance vector machine (RVM), sparse Bayesian
learning.

I. INTRODUCTION

C OMPRESSIVE sensing (or sampling) (CS) has become a
very active research area in recent years due to its inter-

esting theoretical nature and its practical utility in a wide range
of applications. Let represent the unknown signal, which
is compressible in a linear basis (such as a wavelet basis). In
other words, , where is an sparse signal, i.e.,
most of its coefficients are zero. Consider the following acqui-
sition system:

(1)

where linear measurements of the original unknown
signal are taken with an measurement matrix
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and represents the acquisition noise. We can
also write (1) in terms of the sparse transform coefficients as

(2)

where , which is the commonly used notation in the
CS literature and will be adopted in the rest of this paper.

According to the theory of compressive sensing, when the
number of measurements is small compared to the number of
signal coefficients , under certain conditions the
original signal can be reconstructed very accurately by uti-
lizing appropriate reconstruction algorithms [1], [2]. Compres-
sive sensing can be seen as the combination of the conventional
acquisition and compression processes: Traditionally, the signal

is acquired in a lossless manner followed by compression
where only the most important features are kept, such as the
largest wavelet coefficients. In [1] and [2], it has been shown
that since the signal is compressible, it is possible to merge the
acquisition and compression processes by performing a reduced
number of measurements and recovering the most important
features by utilizing an incoherent sampling mechanism, i.e., the
sensing basis and the representation basis have low coher-
ence. Recent theoretical results show that random sampling ma-
trices exhibit such low coherence with the representation bases.
Deterministic designs have also been proposed with slightly re-
duced performance [3], [4].

There are many applications of compressive sensing, in-
cluding medical imaging [5] where reducing the number
of measurements results in reduced image acquisition time,
imaging processes where the cost of taking measurements is
high, and sensor networks, where the number of sensors may
be limited [6].

Since the number of measurements is much smaller than
the number of unknown coefficients , the original signal
cannot be obtained directly from the measurements. The inver-
sion of (1) or (2) is required, which is an ill-posed problem.
Therefore, compressive sensing incorporates a reconstruction
mechanism to obtain the original signal. By exploiting the
sparsity of , the inverse problem is regularized constraining
the norm of , , which is equal to the number of
nonzero terms in . An approximation to the original signal is
then obtained by solving the following optimization problem:

(3)

This optimization problem is NP-hard; therefore, some simplifi-
cations are used. The most common one is to use the -norm in-
stead of the -norm, so that the optimization problem becomes

(4)

where denotes the -norm.
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A number of methods have been proposed to solve the CS
reconstruction problems defined in (3) and (4) or their exten-
sions (for example, formulations utilizing norms for with

). Most of the proposed methods are examples of en-
ergy minimization methods, including linear programming al-
gorithms [7], [8] and constructive (greedy) algorithms [9]–[11].
Additionally, sparse signal representation is a very close topic to
CS, and many algorithms proposed there can also be applied to
the CS reconstruction problem (see [12] and references therein).

The compressive sensing formulation in (3) and (4) can be
considered as the application of a deterministic regularization
approach to signal reconstruction. However, the problem can
also be formulated in a Bayesian framework, which provides
certain distinct advantages over other formulations. These in-
clude providing probabilistic predictions, automatic incorpora-
tion and estimation of model parameters, and estimation of the
uncertainty of reconstruction. The latter advantage also facili-
tates the estimation of the quality of the measurements which
can be used to design adaptive measurements [13], [14]. The
Bayesian framework was utilized for the compressive sensing
problem in [13] and [14]. In [13], the relevance vector machine
(RVM) proposed in [15] is adapted to the CS problem. Inde-
pendent Laplace priors are utilized for each coefficient in an
expectation-propagation framework in [14], and both signal re-
construction and measurement design problems are considered.
However, the resulting algorithm is complicated to implement,
and all required parameters are not estimated, but rather left as
parameters to be tuned.

In this paper, we also formulate the CS reconstruction
problem from a Bayesian perspective. We utilize a Bayesian
model for the CS problem and propose the use of Laplace
priors on the basis coefficients in a hierarchical manner. As
will be shown, our formulation includes the RVM formulation
[15] as a special case, but results in smaller reconstruction
errors while imposing sparsity to a higher extent. Moreover,
we provide a Bayesian inference procedure which results in an
efficient greedy constructive algorithm. Our formulation natu-
rally incorporates the advantages of the Bayesian framework,
such as providing posterior distributions rather than point esti-
mates, and, therefore, providing an estimate of the uncertainty
in the reconstructions, which, for instance, can be used as a
feedback mechanism for adapting the data acquisition process.
Furthermore, the resulting algorithm is fully automated since
all required model parameters are estimated along with the
unknown signal coefficients . This is in contrast to most of
the existing methods in the literature which include a number
of parameters to be tuned specifically to the data, which is a
cumbersome process. We will demonstrate with experimental
results that despite being fully automated, the proposed al-
gorithm provides competitive and even higher reconstruction
performance than state-of-the-art methods.

The rest of this paper is organized as follows. In Section II, we
present the hierarchical Bayesian modeling of the CS problem,
the observation model and the prior model on the signal co-
efficients. In this section, we review existing prior models for
sparse learning and show that some of them are special cases of
the model used in this paper. In Section III, we apply the evi-
dence procedure to the CS problem and propose an efficient re-
construction algorithm. We present experimental results in Sec-
tion IV and conclusions are drawn in Section V.

II. BAYESIAN MODELING

In Bayesian modeling, all unknowns are treated as stochastic
quantities with assigned probability distributions. The unknown
signal is assigned a prior distribution , which models
our knowledge on the nature of . The observation is also a
random process with conditional distribution , where

is the inverse noise variance. These distributions de-
pend on the model parameters and , which are called hy-
perparameters, and additional prior distributions, called hyper-
priors, are assigned to them.

The Bayesian modeling of the CS reconstruction problem re-
quires the definition of a joint distribution of all
unknown and observed quantities. In this paper, we use the fol-
lowing factorization:

(5)

A. Observation (Noise) Model

The observation noise is independent and Gaussian with zero
mean and variance equal to , that is, with (2)

(6)

with a Gamma prior placed on as follows:

(7)

The Gamma distribution is defined as

(8)

where denotes a hyperparameter, is the scale
parameter, and is the shape parameter. The mean and
variance of are given respectively by

(9)

The Gamma distribution is generally chosen as the prior for the
inverse variance (precision) of a Gaussian distribution because
it is its conjugate prior, which greatly simplifies the analysis and
also includes the uniform distribution as a limiting case.

B. Signal Model

The regularization formulation in (4) is equivalent to using
a Laplace prior on the coefficients , that is

(10)

and using a maximum a posteriori (MAP) formulation with (6)
and (10) for . However, this formulation of the Laplace
prior does not allow for a tractable Bayesian analysis, since it is
not conjugate to the conditional distribution in (6). To alleviate
this, hierarchical priors are employed. In the following, we re-
view the models utilized so far in the literature to model and
introduce the prior structure utilized in this work.
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In [16], as the first stage of a hierarchical model, the following
prior is employed on :

(11)

where . In the second stage of the hier-
archy, a Jeffrey’s hyperprior is utilized independently on each

, that is

(12)

Observe that since

(13)

we can obtain a sample from the prior distribution of each
independently by first obtaining a sample from a dis-
tribution when and then sampling a .

Alternatively, in [15], the prior model on is formulated
conditioned on the precision variables . A Gamma
hyperprior is utilized on the precision variables, that is

(14)

This formulation with the hierarchical prior in (11) and (14) is
commonly referred to as the relevance vector machine (RVM),
or sparse Bayesian learning (SBL) [12], [15]. Note, however,
that both in the original work [15] and its adaptation to the com-
pressive sensing problem [13], the shape and scale parameters
are set respectively equal to , , thus obtaining
uniform or noninformative distributions for these parameters.

When using noninformative priors on ,
becomes

(15)

It is important to mention that when changing variables from
to their corresponding maximum a posteriori estimations

are not related by .
Values of and other than , will result

in Student’s t distributions for the marginal distribution .
It is argued in [17] that Student’s t priors will lead to less sparse
solutions than RVM.

As explained in [14], compared to the separate Gaussian
priors employed on the entries of in the RVM framework,
Laplace priors enforce the sparsity constraint more heavily
by distributing the posterior mass more on the axes so that
signal coefficients close to zero are preferred. Furthermore,
the Laplace prior is also the prior that promotes sparsity to the
largest extent while being log-concave [14]. The log-concavity
provides the very useful advantage of eliminating local-minima
since it leads to unimodal posterior distributions [14], [18],
[19].

Based on the above, in this paper, we propose to use Laplace
priors on the signal coefficients . In order to overcome the fact
that the Laplace distribution is not conjugate to the observation

model in (6), we model it in a hierarchical way by using the
following hyperpriors on [16]

(16)
and then using the Gaussian model in (11) to model . In
other words, we have

(17)

Finally, we model as the realization of the following
Gamma hyperprior:

(18)

The proposed modeling constitutes a three-stage hierarchical
form. The first two stages of this hierarchical prior (11) and (16)
result in a Laplace distribution [16], and the last stage
(18) is embedded to calculate . This formulation can be shown
to be very closely related to the convex variational formulation
in [20], and the total-variation priors used in image restoration
[21].

The prior distribution on is flexible enough so as to provide
a range of restrictions on ; from very vague information on

(19)

which would be obtained when , to very precise
information

if
elsewhere (20)

which is obtained when . Note that by using a
, we have more flexibility regarding the hyper-

prior of but at the cost of having to estimate an additional
parameter.

Observe that we can obtain a sample from the prior distribu-
tion of by first sampling a distribution to obtain

, then sample a distribution times to obtain ,
and finally sample to obtain .

We can now see a clear difference between how a realization
from each of the prior distributions is obtained. While the
in (12) and in (14) are obtained as realizations of inde-
pendent distributions, the values in (16) all come from a
common distribution (see Fig. 1). The advantage of using the
model in (12) and the model in (14) with , is that
there is no need to estimate the parameter [16]. However, as
we will see in the next section, the inference based on the model
in (12) is a particular case of the one based on the model in (16)
which leads to the Laplace prior model. We will also show with
experimental results that the performance of our model is supe-
rior to the alternative prior models of the signal coefficients.

By combining the stages of the hierarchical Bayesian
model, the joint distribution can finally be defined as

, where
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Fig. 1. Directed acyclic graph representing the Bayesian model.

, , , and are defined in (6),
(7), (11), (16), and (18) respectively. The dependencies in this
joint probability model are shown in graphical form in Fig. 1,
where the arrows are used to denote the generative model. Note
that the hierarchical structure can also be seen from the first
four blocks from the left, which correspond to the variables ,

, , and .

III. BAYESIAN INFERENCE

As widely known, Bayesian inference is based on the poste-
rior distribution

(21)

However, the posterior is intractable, since

(22)

cannot be calculated analytically. Therefore, approximation
methods are utilized. In this paper, we utilize the evidence
procedure (type-II maximum likelihood approach) to perform
Bayesian inference.

A. Evidence Procedure

We will now derive the Bayesian inference using an evidence
procedure with the conditional distribution in (6) and the priors
in (11), (16), and (18). Our inference procedure is based on the
following decomposition:

(23)

where the dependency on is dropped for clarity. Since
, the distribution

is found to be a multivariate Gaussian dis-
tribution with parameters

(24)
(25)

with

(26)

We now utilize in (23) to estimate the hy-
perparameters. In the type-II maximum likelihood proce-
dure, we represent by a degenerate distribution
where the distribution is replaced by a delta function at
its mode, where we assume that this posterior distribu-

tion is sharply peaked around its mode [22]. Then, using
, we

estimate the hyperparameters by the maxima of the joint distri-
bution which is obtained from by
integrating out . Consequently, we have

(27)

where and is the identity
matrix.

Instead of maximizing this distribution, we maximize equiv-
alently its logarithm, which results in the following functional
to be maximized:

(28)

Let us now state some equivalences that will be useful in
solving this maximization problem. First, we obtain

(29)

using the determinant identity [23] and thus

(30)

Furthermore, using the Woodbury identity [24], we have

(31)

and, therefore

(32)

Using these identities, the derivative of with respect to
is given by

(33)
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where with the diagonal element of .
Setting this equal to zero results in

(34)

The updates of the other hyperparameters are found similarly
by taking the derivative of (28) with respect to each hyperpa-
rameter and setting it equal to zero. The updates found in this
manner are given by

(35)

(36)

where the expected value is calculated with respect to the con-
ditional distribution of .

Finally, we can also estimate by maximizing (28) with re-
spect to . This results in solving the following equation:

(37)

This equation does not have a closed-form solution so it is
solved numerically.

In summary, at each iteration of the algorithm, given esti-
mates of , , and , the estimate of the distribution of is
calculated using (24) and (25), followed by the estimation of
the variances from (34), the hyperparameter from (35), the
noise inverse variance (precision) from (36) and from (37),
where the expected values needed in these equations are calcu-
lated using the current distribution of .

Note that the same update equations can be obtained by ap-
plying an expectation-maximization (EM) procedure instead of
the direct maximization method employed in this section. Fixed
point iterations [25] can also be applied to find , , and . Note
also that a similar optimization procedure is used in [26] for a
different modeling of the signal.

B. Fast Suboptimal Solutions
There is a major disadvantage of the method presented in

the previous section; namely, it requires the solution of a linear
system of equations in (24), which requires compu-
tations. Moreover, since the system in (2) is underdetermined
with , numerical errors create major practical difficul-
ties in solving this system. Although the matrix can be written
using the Woodbury matrix identity as follows:

(38)

which requires the solution of only linear equations, there-
fore, time, this is in practice more problematic due to
numerical errors and it still does not scale up well for large-scale
problems. Therefore, the algorithm presented in the previous
section cannot be easily applied to practical problems, but it will
serve us as the starting point in developing a practical algorithm
as follows.

To promote sparsity and to decrease the computational re-
quirements, only a single will be updated at each iteration

of the algorithm instead of updating the whole vector . As will
be shown later, updating a single hyperparameter leads to very
efficient updates of the matrix and the mean . A fundamental
observation is that if a single hyperparameter is set equal to
zero, must be equal to 0, and so the corresponding entry is
pruned out from the model. Since it is assumed that the vector

is sparse, many of its components are zero; therefore, most
’s are set equal to zero, and matrix can be represented using

fewer dimensions than . Exploiting these properties, one
can obtain a much more efficient procedure than the algorithm
presented in the previous section, by starting with an “empty”
model and iteratively adding components to the model.
In the following, we will present such a procedure.

A fundamental observation to obtain the fast suboptimal so-
lution is that the matrix in (28) can be written as follows:

(39)

where denotes that the contribution of the basis is not
included. Using the Woodbury identity in (39), we obtain

(40)

and using the determinant identity, we obtain

(41)

Substituting the last two equations in (28) and treating as a
function of only, we obtain

(42)

(43)

where
and and are defined as

(44)
(45)

Note that the quantities and do not depend on since
is independent of . Therefore, the terms related to a

single hyperparameter are now separated from others. Let
us now examine if the basis should be included. A closed
form solution of the maximum of , when only its com-
ponent is changed, can be found by holding other hyperparam-
eters fixed, taking its derivative with respect to and setting it
equal to zero. The derivative of with respect to can be
expressed as
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(46)

Note that the numerator has a quadratic form while the denom-
inator is always positive, and, therefore, is sat-
isfied at

(47)

(48)

where . Observe that if
, then and both solutions in (48) are

negative, and since , the maximum occurs
at . On the other hand if , there are two real
solutions, one negative and the variance estimate

(49)
Since when we have and

, the obtained variance estimate in (49)
maximizes and, therefore, .

In summary, the maximum of , when all components of
except are kept fixed, is achieved at

if
otherwise.

(50)
Note that in the case of , the corresponding basis is
pruned out from the model and is set equal to zero. There-
fore, (50) provides a systematic method of deciding which basis
vectors should be included in the model and which should be ex-
cluded. Note that as in the previous section, the estimate of is
provided by (35).

It is crucial for computational efficiency that once a hyperpa-
rameter is updated using (50), the quantities , , and
are efficiently updated. Similarly to [27], the parameters and

can be calculated for all basis vectors efficiently using the
following identities:

(51)
(52)

(53)

(54)

where and include only the columns that are included in
the model . Moreover, and can be updated very
efficiently when only a single coefficient is considered, as in
[27]. Utilizing these equations, we can obtain an iterative pro-
cedure by updating one hyperparameter at each iteration, and
updating , , and accordingly. The procedure is summa-
rized below in Algorithm 1.

Algorithm 1 FAST LAPLACE

1: INPUTS: ,

2: OUTPUTS: , ,

3: Initialize all ,

4: while convergence criterion not met do

5: Choose a (or equivalently choose a basis vector )

6: if AND then

7: Add to the model

8: else if AND then

9: Re-estimate

10: else if then

11: Prune from the model (set )

12: end if

13: Update and

14: Update ,

15: Update using (35)

16: Update using (37)

17: end while

At step 5 of the algorithm, a candidate must be selected
for updating. This can be done by randomly choosing a basis
vector , or by calculating each and choosing the one that
results in the greatest increase in in (42), which results in
a faster convergence. The latter is the method implemented in
this work. Finally, the updates of , , , and in the add,
delete, and re-estimate operations are the same as those in the
RVM formulation (see [27, Appendix A] for details).

An important step in the algorithm is the estimation of the
noise precision , which is done in the previous section using
(36). Unfortunately, this method cannot be used in practice in
this fast algorithm since the proposed algorithm is constructive
and the reconstruction and, therefore, the estimate in (36) are
unreliable at early iterations. Due to the underdetermined na-
ture of the compressive sensing problem, once the estimate of
is very far from its true value, the reconstruction quality is also
significantly affected. Therefore, we fix the estimate of this pa-
rameter in the beginning of the algorithm using
inspired by [8] and [13]. Alternatively, this parameter can be in-
tegrated out from the model as in [28].

Note that unlike other constructive (or greedy) methods such
as OMP [9], StOMP [29], and gradient pursuit methods [11],
included basis vectors can also be deleted once they are deter-
mined to be irrelevant. This is a powerful feature of the algo-
rithm, since errors in the beginning of the reconstruction process
can be fixed in later stages by effectively pruning out irrelevant
basis vectors which can drive the algorithm away from the op-
timal result.
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Let us complete this section by comparing the variance esti-
mates provided by the relevance vector machine (where )
with the ones provided by the proposed method in terms of spar-
sity. The estimate in the RVM framework is given by [27]

(55)

while as we have seen the estimate provided by the modeling
using the Laplace distribution is given by

(56)

Clearly, the RVM model corresponds to the particular case of
in our model. The solution of (55) is given by

if
otherwise.

(57)

Let us now examine the difference . When
, we have

if
if (58)

When , the derivative of the function at
is . Since , the maximum

of occurs at a smaller value than . Consequently,
we always have

(59)

Therefore, the estimates using the Laplace prior are al-
ways smaller than the estimates of the relevance vector
machine. Note also that compared to RVM more components
will possibly be pruned out from the model when , since
the cardinality of the set for which is smaller
than of that of the set for which . These obser-
vations imply that the solution obtained by the proposed method
is at least as sparse as the one provided by the RVM. This will
also be shown empirically in Section IV.

IV. EXPERIMENTS

In this section, we present experimental results with both
1-D synthetic signals and 2-D images to demonstrate the per-
formance of the proposed method. We considered experimental
setups used widely in the literature. In the experiments reported
below, we concentrated on the fast algorithm presented in Sec-
tion III-B due to its wider applicability in practical settings. Al-
though it is suboptimal in theory, it provides better reconstruc-
tion results than the algorithm in Section III-A since the com-
putational cost and increased numerical errors render the op-
timal algorithm impractical. This is especially evident when ap-
plying compressive sensing reconstruction algorithms to large-
scale problems, such as images. Note that this is also observed
when applying RVM to machine learning problems [15], [27]
and to CS [13].

The source code developed to obtain the results shown in this
section is available online at http://ivpl.eecs.northwestern.edu/.

A. One-Dimensional Synthetic Signals

We use the following default setup in the experimental results
reported in this section. Four different types of signals of length

are generated, where coefficients at random locations of the
signals are drawn from four different probability distributions,
and the rest of the coefficients are set equal to zero.
The nonzero coefficients of the sparse signals are realizations of
the following four distributions: 1) uniform 1 random spikes,
2) zero-mean unit variance Gaussian, 3) unit variance Laplace,
and 4) Sstudent’s t with 3 degrees of freedom.

As the measurement matrix we chose a uniform spher-
ical ensemble, where the columns are uniformly distributed
on the sphere . Other measurement matrices such as partial
Fourier and uniform random projection (URP) ensembles gave
similar results, and, therefore, they are not reported here.

In the experiments, we fix and and vary the
number of measurements from 40 to 120 in steps of 5. More-
over, we present results with noiseless and noisy acquisitions,
where for the noisy observations we added zero mean white
Gaussian noise with standard deviation 0.03. We repeated each
experiment 100 times and report the average of all experiments.

In the first set of experiments, we compare the effect of dif-
ferent choices of the parameter on the reconstruction perfor-
mance. We ran the algorithm presented in Section III-B with

, , , and estimated using (35). As men-
tioned in Section II, corresponds to the RVM formulation
[27] which will be denoted by BCS following [13]. Moreover,
we show results when the parameter is set equal to zero and
when it is also estimated automatically using (37).

The reconstruction error is calculated as ,
where and are the estimated and true coefficient vectors,
respectively. The criterion is used
to terminate the iterative procedure.

Average reconstruction errors in 100 runs are shown for the
noise-free case in Fig. 2 for all types of signals. It is clear that
using nonzero values for results in lower reconstruction er-
rors with all types of signals, and the case (BCS) gives
the worst reconstruction error. Even arbitrarily selected nonzero
values of (see cases with and ) result in better
error rates. Automatically estimating using (35) results in the
best reconstruction performance.

It is interesting to note that estimating the parameter auto-
matically using (37) results in slightly worse performance than
setting it equal to zero. This suggests that the elements of can
be used to estimate in combination with the improper prior

. In other words, not much more knowledge than
the estimated is needed to estimate . Therefore, is fixed
equal to zero in the remaining experiments.

The results of the same experimental setup with additive ob-
servation noise (zero mean white Gaussian noise with standard
deviation 0.03) are shown in Fig. 3. Similar performance in-
creases by using nonzero values of can be observed, with again
estimating using (35) resulting in the best performance. Note
that although the algorithms result in higher reconstruction er-
rors than in the noise-free case and perfect reconstruction is not
attained, good reconstruction performances are still obtained.
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Fig. 2. Number of measurements� versus reconstruction error for the noise-
free case resulting from different values of �. (a) Uniform spikes �1; nonuni-
form spikes drawn from (b) zero mean unit variance Gaussian, (c) unit variance
Laplace, (d) student’s T with 3 degrees of freedom. In (b), (c), and (d), values
corresponding to� � �� are not shown as the error rates are negligible.

In summary, the experimental results suggest that the pro-
posed framework clearly provides improved reconstruction per-
formance over the RVM framework with only a slight difference
in computations due to the calculation of (35).

In the second set of experiments, we repeat the same exper-
iment and compare the proposed method with the algorithms
BCS [13], BP [7], OMP [9], StOMP with CFAR thresholding
(denoted by FAR) [29], and GPSR [8]. For all algorithms, their
MATLAB implementations in the corresponding websites are
used. The required algorithm parameters are set according to
their default setups and in some cases adjusted for improved
performance. The algorithms BCS, OMP, and FAR are greedy
constructive algorithms like the proposed method, and the
algorithms BP and GPSR are global optimization algorithms.
We ran the GPSR method both with and without the “de-
biasing” option, and reported the best result. In the results
reported below, Laplace denotes the proposed method where
is estimated using (35) and the parameter is set equal to 0.

Average reconstruction errors of 100 runs are shown for the
noise-free case in Fig. 4 for all types of signals. It is clear that
the proposed algorithm outperforms all other methods in terms
of reconstruction error except for the first signal, for which it
provides the best performance after BP and GPSR. However, BP
and GPSR result in worse performance than other methods for
the rest of the signals. Note that with both algorithms we tuned
the algorithm parameters by trial-and-error to achieve their best
performance. On the other hand, both BCS and the proposed
method do not require parameter tuning. Despite this fact, note
that the proposed method provides the best overall performance
among all methods.

Fig. 3. Number of measurements � versus reconstruction error with noisy
observations with different values of �. (a) Uniform spikes �1; nonuniform
spikes drawn from (b) zero mean unit variance Gaussian, (c) unit variance
Laplace, (d) student’s T with 3 degrees of freedom. In (b), (c), and (d), values
corresponding to� � �� are not shown as the error rates converged.

Examples of reconstructions of the uniform spikes signal are
shown in Fig. 5. An important property of the Bayesian methods
BCS and Laplace is that they provide the posterior distribution
of the unknown signal rather than point estimates. This distribu-
tion estimate can be used to provide uncertainty estimates of the
coefficients using the covariance matrix , which are shown as
error-bars in Fig. 5. These error-bars are variance estimates of
the coefficients corresponding to the diagonal elements of
matrix . Besides being a measure of the uncertainty of the re-
construction, the covariance matrix can also be used to adap-
tively design the measurement matrix [13], [14].

We repeat the same experiment this time with additive ob-
servation noise (zero mean white Gaussian noise with standard
deviation 0.03). Average reconstruction errors of 100 runs are
shown in Fig. 6. The reconstruction errors obtained by the al-
gorithms are slightly higher than in the noise-free case, and
even with a high number of measurements exact reconstructions
are not obtained. However, the algorithms still provide accurate
reconstructions with a low error rate. Note that the proposed
method Laplace again provides the best overall performance for
a reasonable number of observations.

For the 1-D experiments reported in this section, the average
running times are around 0.1 s for BCS and Laplace, around
0.15 s for BP, and around 0.01 s for the other methods. There-
fore, the proposed method and BCS are computationally slightly
more demanding than other methods except BP, but such differ-
ences are small and they are considered justified considering the
improvement in error rates obtained by the proposed method.
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Fig. 4. Number of measurements� versus reconstruction error for the noise-
free case for different algorithms. (a) Uniform spikes �1; nonuniform spikes
drawn from (b) zero mean unit variance Gaussian, (c) unit variance Laplace,
(d) student’s T with 3 degrees of freedom. In (b), (c), and (d) values corre-
sponding to � � �� are not shown as the error rates converged.

Fig. 5. Reconstruction of uniform spikes signal with� � ���,� � ���, and
	 � ��. (a) Original Signal, (b) Observation, Reconstructions with (c) Laplace,
(d) BP, (e) BCS, (f) OMP, (g) FAR, and (h) GPSR. All reconstructions have
negligible errors except GPSR with reconstruction 
���� � �����. The error
bars in (c) and (e) correspond to the estimated variances of the coefficients.

As will be shown in the next section, the proposed method is
computationally very competitive when applied to larger scale
problems, such as images.

Fig. 6. Number of measurements � versus reconstruction error with noisy
observations for different algorithms. (a) Uniform spikes �1; nonuniform
spikes drawn from (b) zero mean unit variance Gaussian, (c) unit variance
Laplace, (d) student’s T with 3 degrees of freedom. In (b), (c), and (d) values
corresponding to� � �� are not shown for clarity as the error rates converged.

B. Images

In this section, we present a comparison between the pro-
posed method and a number of existing methods on a widely
used experimental setup, namely the multiscale CS reconstruc-
tion [30] of the 512 512 Mondrian image. We adapted the
same test parameters as in the SparseLab package [31]: The
multiscale CS scheme is applied on the wavelet transform of
the image with a “symmlet8” wavelet with the coarsest scale
4 and finest scale 6. The number of wavelet samples is

, the number of measurements is , and the mea-
surement matrices are drawn from a uniform spherical distribu-
tion. We compared the performance of the algorithms BP, BCS,
and StOMP with CFAR and CFDR thresholding with the pro-
posed method. The parameters of the algorithms BP, CFAR, and
CFDR are chosen as in the SparseLab package. As in the pre-
vious section, the parameters of BCS and the proposed method
are solely estimated from the measurements.

The reconstruction error is calculated as , where
and are the estimated and true images, respectively. Since the

measurement matrices are random, the experiment is repeated
100 times and their average is reported. Average reconstruction
errors, running times and the number of nonzero components in
the reconstructed images are shown in Table I, where “Linear”
denotes linear reconstruction with measurements
and represents the best reconstruction performance that can be
achieved. It is clear that although BCS and Laplace have nearly
the same error rate, Laplace is faster and the reconstructed image
is sparser. In fact, Laplace provides the sparsest
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TABLE I
AVERAGE RECONSTRUCTION ERRORS, RUNNING TIMES AND

NUMBER OF NONZERO COMPONENTS FOR MULTISCALE
CS RECONSTRUCTION OF THE Mondrian IMAGE

Fig. 7. Examples of reconstructed Mondrian images using a mul-
tiscale compressive sensing scheme by (a) linear reconstruction
������ � �����	
�, (b) BP (����� � ������, ���� � ��


 s,
��� �� ������� ���������� � ����), (c) StOMP with FDR thresholding
(����� � ����, ���� � ���� s, ��� �� ������� ���������� � 	��	),
(d) StOMP with FAR thresholding (����� � ������, ���� � ���
� s,
��� �� ������� ���������� � ����), (e) BCS (����� � ����	��,
���� � ������ s, ��� �� ������� ���������� � ���
) and (f) Laplace
(����� � ����	��, ���� � �
���	, ��� �� ������� ���������� � ��	
).

reconstructed image among all methods. The CFDR method, al-
though it is the fastest, has the worst reconstruction error, and
the BP method, although it has the best reconstruction error, has
the largest computation time. Laplace and CFAR are clearly the
methods that should be preferred, having near-best reconstruc-
tion errors and smallest computation times, where CFAR being
slightly faster and Laplace having slightly lower reconstruction
error. Examples of reconstructed images are shown in Fig. 7
where it can be observed that these methods provide fairly good
reconstructions.

In summary, experimental results with both 1-D synthetic sig-
nals and 2-D images show that the proposed method provides
improved performance in reconstruction quality with competi-
tive performance in computational resources.

V. CONCLUSION

In this paper, we formulated the compressing sensing
problem from a Bayesian perspective, and presented a frame-
work to simultaneously model and estimate the sparse signal
coefficients. Using this framework, we compared different
sparsity priors, and proposed the use of a hierarchical form of
Laplace priors on signal coefficients. We have shown that the
relevance vector machine is a special case of our formulation,
and that our hierarchical prior modeling provides solutions
with a higher degree of sparsity and lower reconstruction
errors. We proposed a constructive (greedy) algorithm resulting
from this formulation, which updates the signal coefficients
sequentially in order to achieve low computation times and
efficiency in practical problems. The proposed algorithm es-
timates the unknown signal coefficients simultaneously along
with the unknown model parameters. The model parameters
are estimated solely from the observation, and, therefore, the
proposed algorithm does not require user intervention unlike
most existing methods. We demonstrated that overall, the
proposed algorithm results in higher performance than most
state-of-the-art algorithms. Moreover, the proposed method
provides estimates to the distributions of the unknown signal
which can be used to measure their uncertainty. The theoretical
framework and the proposed algorithm are easy to implement
and generalize to investigate further uses of the Bayesian
framework in compressive sensing.
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